Melanocortin 2 receptor (MC2R) is the only canonical ACTH receptor. Its functional expression requires the presence of an accessory protein, known as melanocortin receptor 2 accessory protein 1 (MRAP1). The vertebrate genome exhibits a paralogue gene called MRAP2, which is duplicated in zebrafish (MRAP2a and MRAP2b), although its function remains unknown. In this paper, we demonstrate that MRAP2a enables MC4R, a canonical MSH receptor, to be activated by ACTH with a similar sensitivity to that exhibited by MC2R. Both proteins physically interact and are coexpressed in the neurons of the preoptic area, a key region in the control of the energy balance and hypophyseal secretion in fish. ACTH injections inhibit food intake in wild-type zebrafish but not in fish lacking functional MC4R. Both MRAP1 and MRAP2a are hormonally regulated, suggesting that these proteins are substrates for feed-back regulatory pathways of melanocortin signaling. Fasting has no effect on the central expression of MRAP2a but stimulates MRAP2b expression. This protein interacts and is colocalized with MC4R in the tuberal hypothalamic neurons but has no effect on the pharmacologic profile of MC4R. However, MRPA2b is able to decrease basal reporter activity in cell lines expressing MC4R. It is plausible that MRAP2b decreases the constitutive activity of the MC4R during fasting periods, driving the animal toward a positive energy balance. Our data indicate that MRAP2s control the activity of MC4R, opening up new pathways for the regulation of melanocortin signaling and, by extension, for the regulation of the energy balance and obesity.
Melanocortin signaling is regulated by the binding of naturally occurring antagonists, agoutisignaling protein (ASIP) and agouti-related protein (AGRP) that compete with melanocortin peptides by binding to melanocortin receptors.ASIP overexpression in transgenic zebrafish results in alterations of dorso-ventral pigment pattern.We further demonstrate that ASIP overexpression results in increased growth but not obesity. The differential growth is explained by increased food efficiency and food intake levels, mediated by a differential sensitivity of the satiety system. Brain transcriptome analysis unravels the flow of melanocortinergic information through the central pathways that controls the energy balance. These melanocortin-induced differences are both sex-dependent and independent. Our data also provide information on the transcriptomic differences between the male and female brain. Results provide direct evidences on the involvement of melanocortin systems in fish feeding behavior and growth by melanocortin-induced inhibitory actions on satiety neural circuits. The information provided herein will help to elucidate new central systems involved in control of obesity but should be of invaluable use for sustaining fish production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.