The present work envisages the development of a novel and low-cost self-mixing interferometry (SMI) technology-based single particle sensing system in a microchannel chip for real time single micro-scale particle sizing. We proposed a novel theoretical framework to describe the impulse SMI signal expression in the time domain induced by a flowing particle. Using Hilbert transform, the interferometric fringe number of the impulse SMI signal was retrieved precisely for particle size discrimination. For the ease of particle sensing, a hydrodynamic focusing microfluidic channel was employed by varying the flow rate ratio between the sample stream and the sheath liquid, and the particle stream of a controllable width was formed very easily. The experimental results presented good agreement with the theoretical values, providing a 300 nm resolution for the particle sizing measurement.
In this paper, we present a novel optical microfluidic cytometry scheme for label-free detection of cells that is based on the self-mixing interferometry (SMI) technique. This device enables simple, fast and accurate detection of the individual cell characteristics and efficient cell type classification. We also propose a novel parameter to classify the cell or particle size. Artificial polystyrene beads and human living cells were measured using this system, and the SMI signal properties were statistically evaluated. The capability of the proposed cytometer for cell type discrimination and size classification has been validated by the measurement results. Our study can provide a very simple technique for cell enumeration and classification without any extra devices such as high-speed camera, photomultiplier and spectrometer. Moreover, the fluorescence staining operation which is necessary in traditional flow cytometry methods is not required either in our system.
We present a sensing technique based on the Optical Feedback Interferometry (OFI) scheme in a laser diode that enables single particle detection at micro and nano-scales through the Doppler-Fizeau effect. Thanks to the proposed signal processing, this sensing technique can detect the presence of single spherical micro/nanoparticles and measure their velocity, even while their diameter is below half the laser wavelength. The method was validated with polystyrene spheres with diameter ranging from 196 nm to 10.14 µm flowing in diluted aqueous solutions. These results indicate potential applications for the biomedical and chemical engineering fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.