The Acapulco earthquake of 2021 broke a segment of the southeast Guerrero seismic gap along the Mexican subduction thrust. The rupture initiated offshore Acapulco (16.770° N, 99.942° W) and propagated down-dip toward northeast. This source directivity is confirmed from both (1) an analysis of local and regional recordings as a function of azimuth and (2) kinematic inversion of near-source, band-pass filtered (0.025–0.5 Hz) displacement seismograms and Global Positioning System static coseismic displacement vectors. The inversion reveals little slip near the hypocenter (<0.5 m) and significant slip distributed over an area of ∼184 km2, with the large slip patches in the northeast part of the fault. The estimated average slip and static stress drop are 260 cm and 18.6 MPa, respectively. Moment rate function reported by National Earthquake Information Center–U.S. Geological Survey from finite-fault modeling is simple, and it resembles other Mexican subduction earthquakes in the 7.0 ≤ M ≤ 7.5 range. Moment rate spectrum is well fit by the Brune ω−2 source model. Radiated seismic energy from teleseismic P waves is 7.5×1014 J, and ER/M0 is 2.1×10−5. Radiated energy enhancement factor—a measure of source complexity—is small, 5.8, similar to other Mexican subduction thrust earthquakes. Seismograms at DeBilt of the 2021 and the 11 May 1962 Acapulco earthquakes show an extraordinary similarity, seldom seen at M 7.0 level. The 2021 earthquake seems a repeat of the 1962 earthquake. The slip deficit since 1962 corresponding to a plate convergence rate of 6.2 cm/yr and perfect coupling is 366 cm. Thus, the seismic slip of 260 cm during that 2021 earthquake suggests a coupling ratio of 0.7, greater than 0.3 and 0.5 reported from geodetic measurements. Large moment release in the southeast seismic gap appears to have a periodicity of ~60 yr. Because 60 yr have elapsed since the last sequence earthquakes (1957 MS 7.5; 1962 MS 7.0 and 6.8), a renewal of large earthquakes in the region may be expected.
El sismo de Michoacán-Colima el 19 de septiembre de 2022 (Ms 7.6, Mw 7.6) rompió el límite NW de la interface entre las placas de Cocos y norteamericana, causando daño severo a muchas poblados y ciudades en los estados de Michoacán y Colima. El daño fue además agravado por una réplica de magnitud importante (Mw 6.7) el 22 de septiembre. El sismo principal inició debajo de la costa a una distancia hipocentral de 22 km de la estación sísmica de Maruata (MMIG) donde las aceleraciones y velocidades máximas registradas, PGA y PGV, fueron de 1g y 28 cm/s, respectivamente. El epicentro de la réplica más grande se localizó a ~30 km al SE del sismo principal. El modelado de falla finita del sismo principal presentado por el Servicio Geológico de los Estados Unidos (USGS), revela una propagación de la ruptura a lo largo del rumbo de la falla hacia la dirección NW con una caída de esfuerzos estáticos Δσs, of 3.7 MPa. Nuestra estimación de energía radiada, ER, es 3.44x1015J, de tal manera que ER /M0 es de 1.27 × 10−5 valor similar al calculado para otros grandes sismos de subducción cuyas área de ruptura no se extienden hacia la trinchera. El área que contiene las réplicas del sismo principal de 2022 se traslapa con el área de réplicas del sismo del 30 de enero de 1973 (Mw7.6). Los sismográmas Galitzin de los dos sismos registrados en la estación DeBilt (DBN) localizada en los Países Bajos son razonablemente similares de tal manera que pueden ser clasificados como eventos quasi-repetidos. Por otro lado, el sismograma DBN del sismo del 15 de abril de 1941 (MS 7.7), cuya localización no se conoce bien del todo, aunque se sabe que ocurre en la misma región, difiere sustancialmente de los sismogramas de 1972 y 2022, sugiriendo que el primero rompió un área diferente de la del sismo de 1941. Un análisis extensivo de registros regionales exhibe el efecto de directividad observada en los datos de movimientos fuertes y en los cocientes de aceleraciones del sismo principal y de las aceleraciones de la réplica mayor. La directividad explica la dependencia azimutal observada en los cocientes de PGA y PGV, los cocientes espectrales, la distribución de PGA y la respuesta espectral a 2s Sa (T = 2 s). Debido a la directividad, los valores de PGA, PGV y Sa (T = 2 s) en el Valle de México durante el sismo principal y la réplica mayor fueron muy similares a pesar de la diferencia en magnitud de 0.9. En CU (el sitio de roca firme de referencia en la Ciudad de México), PGA y PGV durante ambos eventos fueron de ~ 6 cm/s2 and 2 cm/s, respectivamente, valores más bajos que los esperados para el sismo principal y más altos que los esperados para la réplica mayor.
The seismic gap hypothesis has been widely cited in Mexico to predict the location of future earthquakes. However, no analysis of the outcome of any predictions of the hypothesis in Mexico has been done to date. This work analyzes the outcome of the prediction by Nishenko and Singh (1987a), which is based on probability distribution functions over time in defined segments that allow for a formal evaluation. Specific probabilities were given for 5, 10, and 20 yr after 1986, using the cumulative distribution function. The prediction relies on the precise repeat times of characteristic earthquakes to define the segments, but we show that the catalog the authors use relies on an imprecise definition of characteristic earthquakes. We discuss some of their decisions in building their catalog to explain how we analyze the outcome of the prediction. An unexpected result is that the very catalog the authors use to create the gap hypothesis prediction does not seem to support a narrow recurrence interval and instead seems to suggest large variability in earthquake recurrence intervals along the Mexican subduction zone. We generate null model earthquake catalogs using the average number of earthquakes that occur in the subduction zone and randomly distribute these along the segments according to their relative lengths. We find that the null model performs better than the seismic gap hypothesis prediction. No earthquakes occur in segments with a 70% or higher probability according to NS1987 (there were four such segments in the 20-year time frame), but an Mw 8.0 earthquake occurs in a segment with a less than 16% probability of an earthquake. We conclude that the gap hypothesis performed poorly at predicting earthquakes in Mexico and, in fact, its predictions were worse than predicting earthquakes by chance.
Modern analysis of earthquakes depends on digital time series; however, only about 30% of the timespan of recorded seismicity is available in digital format.During the first half of the 20th century, most of the earthquake ground motions in Mexico were recorded by Wiechert mechanical instruments on smoked paper. In this work, we developed and use Tiitba, a new portable multiplatform graphical user interface (GUI) open-source software coded on python, to vectorize and correct old analogue seismograms. Using this software, we vectorized the 11/1/1928 Parral (M6.3) earthquake seismograms to obtain the constant timeinterval digitized time series for each component and station of the seismogram.Then, we obtained its source focal mechanism using a genetic algorithm methodology. Also, with an auxiliary Tiitba module, we constructed a SEISAN S-file to relocate the hypocentre of this earthquake. The obtained relocation is about 125 km south of a recently recorded seismic swarm that occurred in 2013, which has a similar focal mechanism to the one that we obtained in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.