In this study we explored the effect of the physical environment and the availability of prey (biomass and taxonomic composition) on the patterns of prey capture and reproduction on five populations of Pinguicula moranensis (Lentibulariaceae) in areas ranging from pine-oak forests to desert scrublands. Environmental variation was summarized using principal factor analysis. Prey availability and prey capture increased toward the shadiest, most humid, and fertile population. The probability of reproduction and average bud production per population did not follow the same tendency because both fitness components peaked at the middle of the environmental gradient. These results suggest that the benefits derived from carnivory are maximized at sites fulfilling a trade-off between light, moisture, and prey availability. We also found that the taxonomic composition of both the available prey and that of the prey captured by plants varied among populations. The results also indicated that the prey captured by plants are not a random sample of prey available within populations. Overall, the results from this study revealed a marked amount of heterogeneity in the physical and biotic environment among the populations of P. moranensis, which has the potential to affect the outcome of the interaction between this carnivorous species and its prey.
The interaction of plants with pollinators can be a determinant of their reproductive fitness. However, information about the pollination biology of carnivorous plants is scarce. To increase knowledge of reproductive ecology of carnivorous plants we focused on Pinguicula moranensis. Specifically, based on the presence of large, zygomorphic and spurred flowers, we predicted higher reproductive fitness in cross-pollinated than in self-pollinated flowers. Within a plot of 51 m we characterised the reproductive phenology, including flower lifespan and stigmatic receptivity. We identified pollinators and their movement patterns within the plot. Breeding system was experimentally evaluated using hand-pollination (i.e. autonomous, self- and cross-pollination). Flowers of P. moranensis were visited by long-tongued pollinators, mainly members of the Lepidoptera. Hand-pollination experiments confirmed our prediction and suggest that flower traits might favour cross-pollination. We mainly discuss the implications of the patchy distribution of plants and behaviour of pollinators on gene movement in this plant species, as pollination between genetically related individuals could be occurring.
Aims:Rivers are important corridors for the movement, migration and dispersal of aquatic organisms, including seeds from riparian plants. Although tropical dry forests (TDF) are among the most extensive and floristically rich ecosystems of tropical habitats, and the most globally endangered ecosystem, less attention has been given to riparian corridors within this ecosystem. Although most TDFs manifest peak seed dispersal during dry seasons, we hypothesized that riparian corridors may show a dispersal peak during the rainy season, due to an anticipated 'sweep or drag effect', resulting from river overflow and bank erosion. Our main aims were to investigate whether there were any differences in the seed communities transported by the river to sites in rainy as opposed to dry seasons, and to evaluate any possible relationship between the riparian seed community and river flow.Location: Amacuzac River, drainage of the Balsas basin, State of Morelos, Mexico.Methods: To evaluate the above assumption, we associated Amacuzac River flow with the number of species and seeds dispersed by water. We also characterized and evaluated differences between seed communities transported by the river during the rainy and dry seasons, and between four different sites located along the river. We used univariate and ordination NMDS techniques to evaluate patterns between seasons at the community level.Results: Forty-five plant species were identified from 909 seeds collected from the river. The composition of riparian seed communities was markedly different between seasons but not between sites. Seed abundances were significantly higher in the rainy than in the dry season and varied between sites. Seed species diversity in the river (H' = 1.6-1.9) showed no significant differences between seasons or sites, but species assemblages and dominance varied according to season. Ordination techniques and subsequent fitting analyses showed that seed species composition was positively associated with river flow.Conclusions: Seed dispersal patterns generated by rivers are significant mechanisms for structuring the composition and distribution of the riparian plant community in Mexican TDF. Varying species assemblages and seed abundance dispersed by the river throughout the year is a relevant and until now unknown consequence that may affect the dynamics and composition of riparian plant communities in this region. This
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.