Large conjugated rings give rise to novel promising structures that can sustain persistent currents at low temperatures even in the presence of strong magnetic fields. One of the most interesting such molecules was recently synthesized [Anderson et al., Nature, 2017, 541, 3512] in the form of a six-porphyrin nanoring structure, which, according to the authors, in its +6-oxidation state (c-P66+) sustained an aromatic ring current involving 78π electrons; one of the largest aromatic rings ever produced. In this paper, we have provided compelling evidence that this molecule is not aromatic, as it was incorrectly inferred from computational calculations that suffer from large delocalization errors. A thorough analysis of four oxidation states of the six-porphyrin nanoring re-veals that the main reason behind the poor aromaticity of these nanorings is the low delocalization in the transition from the porphyrins to the bridging butadiyne linkers, which disrupts the overall conjugated circuit. These results highlight the importance of choosing an adequate computational method to study large conjugated molecules and the appropriate aromaticity descriptors to identify the part of the molecule that is responsible for the loss of aromaticity. We believe the strategy here employed will be helpful in designing new large aromatic molecular nanorings.
File list (2)download file view on ChemRxiv Nanoring_manuscript.pdf (3.59 MiB) download file view on ChemRxiv SI_nanoring.pdf (7.39 MiB)
The crystal structure of solid-state matter greatly affects its electronic properties. For example in multilayer graphene, precise knowledge of the lateral layer arrangement is crucial, since the most stable configurations, Bernal and rhombohedral stacking, exhibit very different electronic properties.Nevertheless, both stacking orders can coexist within one flake, separated by a strain soliton that can host topologically protected states. Clearly, accessing the transport properties of the two stackings and the soliton is of high interest. However, the stacking orders can transform into one another and therefore, the seemingly trivial question how reliable electrical contact can be made to either stacking order can a priori not be answered easily. Here, we show that manufacturing metal contacts to multilayer graphene can move solitons by several µm, unidirectionally enlarging Bernal domains due to arising mechanical strain. Furthermore, we also find that during dry transfer of multilayer graphene onto hexagonal Boron Nitride, such a transformation can happen. Using density functional theory modeling, we corroborate that anisotropic deformations of the multilayer graphene lattice decrease the rhombohedral stacking stability. Finally, we have devised systematics to avoid soliton movement, and how to reliably realize contacts to both stacking configurations.
The energetics and diffusion of water molecules and hydrated ions (Na, Cl) passing through nanopores in graphene are addressed by dispersion-corrected density functional theory calculations and ab initio molecular dynamics (MD) simulations. Pores of about 0.8 nm in diameter with different pore-edge passivations, with (H) and (O, H) atoms, were considered. Our MD simulations show a water flux through the hydroxylated pores of about one HO molecule every three picoseconds, in close agreement with recent experiments that estimated a water flux of three molecules per picosecond through pores of ∼1 nm. We also find that both pores are effective in blocking hydrated Na and Cl ions with large energy barriers, ranging from 12 to 15 eV. In addition, pore passivation with O atoms would increase the water transport through hydroxylated pores, due to the formation of hydrogen bonds with nearby water molecules, which is not observed in the hydrogenated pores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.