We demonstrate in this study that it is possible to prepare three‐dimensionally ordered macroporous polymer structures by ice‐templating. Polyvinyl alcohol (PVA) was used as a model system in this study, but the processing route proposed here can be applied to other polymer systems. Multi‐walled carbon nanotubes (MWCNTs) were incorporated into the PVA matrix at concentrations up to 12 wt% to investigate the influence of this addition on the mechanical and electrical properties of the obtained scaffolds. Different freezing routes were used, namely unidirectional, radial, and bidirectional freezing. The addition of MWCNTs had a strengthening effect on the scaffolds, especially when added at loadings around 2 wt%. Samples prepared by unidirectional freezing displayed larger mechanical stability, but materials derived from radial and bidirectional freezing showed a higher electrical conductivity. The obtained materials exhibited apparent porosity above 85%, which can be of great interest in many applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.