Predicting the impact of sea-level (SL) rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry (SDB) shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230 Th ages shows the reef is composed of an ∼2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and transport clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.
Warming Effects on a Mexican Coastal Lagoon diatoms. Algal blooms were composed by species adapted to high temperatures and nutrients depletion in 2015, while in 2016 and 2017 were composed by ruderalstrategist species and they were boosted by the nutrient pulses associated with the spring upwellings. The fall algal bloom, typical of subtropical coastal lagoons, was observed only in 2016 and it was confined to the interior of the lagoon where there are local inputs of nutrients. In 2015 and 2016 there was a succession of diatoms and dinoflagellates related to the rising of temperature while in 2017 this pattern changed because of the strong upwellings. The relationships of water temperature and silicate with a ratio of diatoms' cell abundance, was analyzed using generalized additive models (GAMs), showing significant correlations but different trends in some years. The species richness of diatom blooms was high; on the other hand, species diversity increased at the end of spring and early summer. The seasonal pattern of zooplankton biomass showed changes along the 3 years, but the most noticeable was an increase during winter and early spring 2015 and the lack of the usual high values of June-July in 2017. The seasonal pattern of the phytoplankton abundance was different in comparison with the 1982-1983 El Niño while the zooplankton was similar among the three strongest El Niño. The changes we observed strongly suggest that the warming caused by those phenomena highly affected the upwelling strength, the length of the temperate and warm seasons and the hydrology. Phenology of phytoplankton and zooplankton changed after the strong perturbation under the El Niño, and possibly The Blob. The recovery of phytoplankton biomass began in 2017, but its taxonomic composition was not adequate to support the zooplankton recovery.
Sustainable energy is needed globally, and Ocean Thermal Energy Conversion (OTEC) is a possible way to diversify the energy matrix. This article suggests a preliminary selection process to find optimal sites for OTEC deployment on the Mexican coastline. The method comprises the (1) evaluation of the thermal power potential, using daily data (16 years) of sea surface temperature, and the percentage of available time of the power thresholds; (2) assessment of feasibility using a decision matrix, fed by technical, environmental and socioeconomic criteria; (3) identification of four potential sites; and (4) comparison of OTEC competitiveness with other technologies through the levelized cost of energy. Multi-criteria decision analysis was applied to select optimal sites, using the technique for ordering performance by the similarity to the ideal solution. The best sites were (1) Puerto Angel and (2) Cabo San Lucas; with power production of > 50 MW and a persistence of > 40%. As yet there is no evidence from operational OTEC plants that could alter the environmental and socioeconomic criteria weightings. More in situ studies on pilot plants should help to determine their possible environmental impact and socio-economic consequences before any larger-scale projects are implemented.
The goal of our work was to locate and quantify changes that occurred in 66% of the Mexican coastline, based on four land cover maps generated by the Mexican Mangrove Monitoring System (SMMM) of the National Commission for the Knowledge and Use of Biodiversity (CONABIO) for the years 1970/81, 2005, 2010, and 2015. Our results showed overall dominance of erosion over accretion processes, beaches being the most affected coastal land cover. Emphasis was placed on identification and description of coastline sites in which land was either continuously lost (erosion) or gained (accretion) during the studied time periods. These sites were defined as continuous unidirectional dynamic sites and were compared with previous knowledge about the geodynamics of Mexican coasts. Continuous unidirectional dynamic sites were distributed throughout the study area and within all land cover types, but predominantly corresponded to areas covered by mangroves in the states of Campeche and Nayarit. Finally, we found an intensification of coastal erosion-accretion processes over time; coastline change rates having duplicated between the earliest (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.