We examined the in vivo effects of the hallucinogen 4-iodo-2,5-dimethoxyamphetamine (DOI). DOI suppressed the firing rate of 7 of 12 dorsal raphe (DR) serotonergic (5-HT) neurons and partially inhibited the rest (ED(50) = 20 microg/kg, i.v.), an effect reversed by M100907 (5-HT(2A) antagonist) and picrotoxinin (GABA(A) antagonist). DOI (1 mg/kg, s.c.) reduced the 5-HT release in medial prefrontal cortex (mPFC) to 33 +/- 8% of baseline, an effect also antagonized by M100907. However, the local application of DOI in the mPFC increased 5-HT release (164 +/- 6% at 100 microm), an effect antagonized by tetrodotoxin, M100907, and BAY x 3702 (5-HT(1A) agonist) but not by SB 242084 (5-HT(2C) antagonist). The 5-HT increase was also reversed by NBQX (AMPA-KA antagonist) and 1S,3S-ACPD (mGluR 2/3 agonist) but not by MK-801 (NMDA antagonist). AMPA mimicked the 5-HT elevation produced by DOI. Likewise, the electrical-chemical stimulation of thalamocortical afferents and the local inhibition of glutamate uptake increased the 5-HT release through AMPA receptors. DOI application in mPFC increased the firing rate of a subgroup of 5-HT neurons (5 of 10), indicating an enhanced output of pyramidal neurons. Dual-label fluorescence confocal microscopic studies demonstrated colocalization of 5-HT(1A) and 5-HT(2A) receptors on individual cortical pyramidal neurons. Thus, DOI reduces the activity of ascending 5-HT neurons through a DR-based action and enhances serotonergic and glutamatergic transmission in mPFC through 5-HT(2A) and AMPA receptors. Because pyramidal neurons coexpress 5-HT(1A) and 5-HT(2A) receptors, DOI disrupts the balance between excitatory and inhibitory inputs and leads to an increased activity that may mediate its hallucinogenic action.
The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT 2A receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT 2A receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT 2 antagonists and SSRIs. M100907 has a B100-fold or greater selectivity at 5-HT 2A receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT 2A receptors at doses below 100 mg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT 2A receptor antagonist (6.25-12.5 mg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 mg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT 2A receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.
We studied the control of dorsal raphe (DR) serotonergic neurons by dopaminergic transmission in rat brain using microdialysis and single unit extracellular recordings. Apomorphine (0.5±3.0 mg/kg s.c.) and quinpirole (0.5 mg/kg s.c.) increased serotonin (5-HT) output in the DR and (only apomorphine) in striatum. These effects were antagonized by 0.3 mg/kg s.c. SCH 23390 (in DR and striatum) and 1 mg/kg s.c. raclopride (in DR). 5-HT 1A receptor blockade potentiated the 5-HT increase produced by apomorphine in the DR. Apomorphine (50±400 mg/kg i.v.) increased the ®ring rate of most 5-HT neurons, an effect prevented by SCH 23390 and raclopride. Quinpirole (40±160 mg/kg i.v.) also enhanced the ®ring rate of 5-HT neurons. When applied in the DR, neither drug increased the 5-HT output in the DR or striatum.Likewise, micropressure injection of quinpirole (0.2±8 pmol) failed to increase the ®ring rate of 5-HT neurons. In situ hybridization showed that the dopamine (DA) D 2 receptor transcript was almost absent in the DR and abundant in the substantia nigra (SN) and the periaqueductal grey matter (PAG). Using dual probe microdialysis, the application of tetrodotoxin or apomorphine in SN signi®cantly increased the DR 5-HT output. Thus, the discrepancy between local and systemic effects of dopaminergic agonists and the absence of DA D 2 receptor transcript in 5-HT neurons suggest that DA D 2 receptors outside the DR control serotonergic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.