In this paper, we present techniques that allow one or multiple mobile robots to efficiently explore and model their environment. While much existing research in the area of Simultaneous Localization and Mapping (SLAM) focuses on issues related to uncertainty in sensor data, our work focuses on the problem of planning optimal exploration strategies. We develop a utility function that measures the quality of proposed sensing locations, give a randomized algorithm for selecting an optimal next sensing location, and provide methods for extracting features from sensor data and merging these into an incrementally constructed map.We have also provide an efficient algorithm driven by our utility function. This algorithm is able to explore several steps ahead without incurring too high a computational cost. We have compared that exploration strategy with a totally greedy algorithm that optimizes our utility function with a one-step-look ahead.The planning algorithms which have been developed operate using simple but flexible models of the robot sensors and actuator abilities. Techniques that allow implementation of these sensor models on top of the capabilities of actual sensors have been provided.All of the proposed algorithms have been implemented either on real robots (for the case of individual robots) or in simulation (for the case of multiple robots), and experimental results are given.
Detecting non-human activity in social networks has become an area of great interest for both industry and academia. In this context, obtaining a high detection accuracy is not the only desired quality; experts in the application domain would also like having an understandable model, with which one may explain a decision. An explanatory decision model may help experts to consider, for example, taking legal action against an account that has displayed offensive behavior, or forewarning an account holder about suspicious activity. In this paper, we shall use a pattern-based classification mechanism to social bot detection, specifically for Twitter. Furthermore, we shall introduce a new feature model for social bot detection, which extends (part of) an existing model with features out of Twitter account usage and tweet content sentiment analysis. From our experimental results, we shall see that our mechanism outperforms other, state-of-the-art classifiers, not based on patterns; and that our feature model yields better classification results than others reported on in the literature.
Latent fingerprint identification is attracting increasing interest because of its important role in law enforcement. Although the use of various fingerprint features might be required for successful latent fingerprint identification, methods based on minutiae are often readily applicable and commonly outperform other methods. However, as many fingerprint feature representations exist, we sought to determine if the selection of feature representation has an impact on the performance of automated fingerprint identification systems. In this paper, we review the most prominent fingerprint feature representations reported in the literature, identify trends in fingerprint feature representation, and observe that representations designed for verification are commonly used in latent fingerprint identification. We aim to evaluate the performance of the most popular fingerprint feature representations over a common latent fingerprint database. Therefore, we introduce and apply a protocol that evaluates minutia descriptors for latent fingerprint identification in terms of the identification rate plotted in the cumulative match characteristic (CMC) curve. From our experiments, we found that all the evaluated minutia descriptors obtained identification rates lower than 10% for Rank−1 and 24% for Rank−100 comparing the minutiae in the database NIST SD27, illustrating the need of new minutia descriptors for latent fingerprint identification.INDEX TERMS Latent fingerprint identification, minutia descriptor, fingerprint feature representation, minutia descriptor evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.