This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.
Abstract-We present ORB-SLAM2 a complete SLAM system for monocular, stereo and RGB-D cameras, including map reuse, loop closing and relocalization capabilities. The system works in real-time on standard CPUs in a wide variety of environments from small hand-held indoors sequences, to drones flying in industrial environments and cars driving around a city. Our back-end based on bundle adjustment with monocular and stereo observations allows for accurate trajectory estimation with metric scale. Our system includes a lightweight localization mode that leverages visual odometry tracks for unmapped regions and matches to map points that allow for zero-drift localization. The evaluation on 29 popular public sequences shows that our method achieves state-of-the-art accuracy, being in most cases the most accurate SLAM solution. We publish the source code, not only for the benefit of the SLAM community, but with the aim of being an out-of-the-box SLAM solution for researchers in other fields.
Abstract-In recent years there have been excellent results in Visual-Inertial Odometry techniques, which aim to compute the incremental motion of the sensor with high accuracy and robustness. However these approaches lack the capability to close loops, and trajectory estimation accumulates drift even if the sensor is continually revisiting the same place. In this work we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system that is able to close loops and reuse its map to achieve zero-drift localization in already mapped areas. While our approach can be applied to any camera configuration, we address here the most general problem of a monocular camera, with its well-known scale ambiguity. We also propose a novel IMU initialization method, which computes the scale, the gravity direction, the velocity, and gyroscope and accelerometer biases, in a few seconds with high accuracy. We test our system in the 11 sequences of a recent micro-aerial vehicle public dataset achieving a typical scale factor error of 1% and centimeter precision. We compare to the state-of-the-art in visual-inertial odometry in sequences with revisiting, proving the better accuracy of our method due to map reuse and no drift accumulation.
Abstract-In this paper we present for the first time a relocalisation method for keyframe-based SLAM that can deal with severe viewpoint change, at frame-rate, in maps containing thousands of keyframes. As this method relies on local features, it permits the interoperability between cameras, allowing a camera to relocalise in a map built by a different camera. We also perform loop closing (detection + correction), at keyframerate, in loops containing hundreds of keyframes. For both relocalisation and loop closing, we propose a bag of words place recognizer with ORB features, which is able to recognize places spending less than 39 ms, including feature extraction, in databases containing 10K images (without geometrical verification). We evaluate the performance of this recognizer in four different datasets, achieving high recall and no false matches, and getting better results than the state-of-art in place recognition, being one order of magnitude faster.
In the last years several direct (i.e. featureless) monocular SLAM approaches have appeared showing impressive semi-dense or dense scene reconstructions. These works have questioned the need of features, in which consolidated SLAM techniques of the last decade were based. In this paper we present a novel feature-based monocular SLAM system that is more robust, gives more accurate camera poses, and obtains comparable or better semi-dense reconstructions than the current state of the art. Our semi-dense mapping operates over keyframes, optimized by local bundle adjustment, allowing to obtain accurate triangulations from wide baselines. Our novel method to search correspondences, the measurement fusion and the inter-keyframe depth consistency tests allow to obtain clean reconstructions with very few outliers. Against the current trend in direct SLAM, our experiments show that by decoupling the semi-dense reconstruction from the trajectory computation, the results obtained are better. This opens the discussion on the benefits of features even if a semi-dense reconstruction is desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.