Intraoral scanners (IOS) have reached a point where their impact in the dental office cannot be denied. The distance between the tip of the IOS and the preparation may have implications on the accuracy of the digital model. The objective of this study was to evaluate the differences in accuracy between digital impressions in the scenario of different scanning distances. Twenty consecutive scans were performed at five predetermined distances: 5 mm, 10 mm, 15 mm, 20 mm and 23 mm by a single operator. The scanning distance of 10 mm displayed the best accuracy with an overall trueness value of 23.05 μm and precision value of 4.2 μm. The drawn conclusion was that increased scanning distances can decrease the accuracy of a digital impression.
The aim of this study was to evaluate the accuracy of two intraoral scanners used in the dental office. A molar fixed in a typodont was prepared for a ceramic onlay. The preparation was scanned using a high-resolution scanner (reference scanner) and saved as stereolithography (STL) format. The prepared resin molar was scanned again using the intraoral scanners, and all the scans were saved as well in STL format. All STL files were compared using metrology software (Geomagic Control X). Overlapping the meshes allowed the assessment of the scans in terms of trueness and precision. Based on the results of this study, the differences of trueness and precision between the intraoral scanners were minimal.
The aim of this study was to evaluate the influence of different settings of ambient light intensity inside the dental office on the accuracy (trueness and precision) of an intraoral scanner (IOS). A full crown preparation was conducted on a resin molar which was scanned using a high resolution extraoral scanner to obtain a reference model. Six light settings were chosen based on the most clinically relevant light conditions inside the workspace, and the preparation was scanned using an intraoral scanner (PlanScan, Planmeca). The obtained data was analyzed using a professional 3D quality control software (Geomagic Control X). There was no statistically relevant difference between the groups when regarding trueness, although a slight influence of the light intensity could be observed on the trueness values. Regarding precision, the best results were obtained in the 3800 lux group, with the other groups presenting close values, excepting the extreme values (400 lux and 11 000 lux) groups that proved to be the most deficient.
The goal of this study was to determine the level of various discrepancies in all-ceramic IPS e. max � lithium disilicated crowns milled with three different milling machines. A 3D printed Geller model with a preparation for allceramic crown was scanned, then the digital design was created and 24 lithium disilicate crowns were milled using three different milling machines: Planmill 40S (Planmeca, Helsinki, Finland), Cerec MC XL (Sirona GmbH, Germany), and one laboratory milling machine Imes-Icore 650i (Coritec, Eiterfeld, Germany). Among the three groups, the highest marginal fit accuracy was displayed by crowns fabricated by laboratory milling machine Imes-Icore 650i, followed by chairside Planmill 40S and Cerec MC XL. The results of our study shows that llithium disilicate crowns fabricated by a laboratory milling and 2 chair-side milling machines present marginal accuracy in the acceptable clinical range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.