SummaryPublicly available microarray experiments were used to analyze Arabidopsis thaliana genes whose expression is correlated with that of nuclear genes encoding components of the oxidative phosphorylation machinery (OxPhos genes). This analysis indicated the existence of coordination in the expression of genes encoding components of the five respiratory complexes. For these genes, preferential expression was observed in anthers and roots, especially in the elongation zone, while reduced or very low relative expression was evident in leaves and mature pollen grains. A global induction of OxPhos genes by carbohydrates, photo-destruction of chloroplasts, inhibition of cellulose synthesis, release from dormancy and germination, among other conditions, was also observed. Cluster analysis of the response of Arabidopsis genes to a set of 15 treatments allowed the identification of DNA motifs, known as site II, that are frequently present in the upstream regions of genes with responses like those of OxPhos genes. Mutagenic analysis of site II motifs in several genes encoding respiratory chain components showed that they actively participate in transcription of these genes. We conclude that an important number of nuclear genes encoding components of the five respiratory complexes show coordinated expression under various circumstances, and that site II elements and the putative proteins that interact with them are, together with as yet unidentified factors, important actors in this coordinated response.
Sequences required for the expression of Cytc-2 (At4g10040), one of two cytochrome c genes from Arabidopsis thaliana, were characterized using plants transformed with deleted and mutagenized promoter fragments fused to gus. These studies indicated that a region containing a G-box and an ACGT motif is essential for expression. Mutation of the ACGT motif causes a complete loss of expression, while mutation of the G-box causes decreased expression in aerial parts and abolishes expression in roots and induction by environmental factors. Upstream located site II elements are required for maximal expression, mainly in reproductive tissues, and maximal induction by different factors. One-hybrid screenings allowed the identification of transcription factors from the bZIP and bHLH families that interact mainly with the G-box. Four of these factors were able to bind to the Cytc-2 promoter in vitro and in transactivation assays in Arabidopsis. Analysis of available microarray data indicated that the bZIP transcription factors share expression characteristics with the Cytc-2 gene, suggesting that they act as mediators of its response to tissue-specific, environmental, and metabolic conditions. Site II elements interact with a TCP family protein and may co-ordinate the expression of the Cytc-2 gene with that of other respiratory chain components. A model is proposed for the evolution of the Cytc-2 gene through the incorporation of a segment containing a G-box and an ACGT motif into an ancestral gene that contained site II elements. This may have reduced the importance of site II elements for basal expression and conferred new responses to environmental factors.
Arabidopsis COX5b-1 encodes an isoform of the zinc binding subunit 5b of mitochondrial cytochrome c oxidase. A promoter region required for expression and induction by sucrose of this gene was analyzed using plants stably transformed with mutagenized promoter fragments fused to the gus reporter gene. Promoter dependent expression is absolutely dependent on a G-box present at -228 from the translation start site. This element interacts in vitro and in vivo with transcription factors from the bZip family, preferentially with the abscisic acid-responsive element binding factor AREB2/ABF4. A region located upstream of the G-box (-333/-259) contains elements with the core sequence ATCATT and distalB-like sequences (CCACTTG) that are required for expression in vegetative tissues. These sequences bind different sets of proteins present in plant nuclear extracts and participate in induction by sucrose (ATCATT) and abscisic acid (distalB) of the COX5b-1 promoter. We propose that the COX5b-1 promoter has acquired novel regulatory mechanisms during evolution after gene duplication. These novel mechanisms have allowed the diversification of expression patterns, but also the conservation of some responses that, as induction by sucrose, are shared by COX5b-1 and other genes encoding components of the mitochondrial respiratory chain. Conservation of these responses may be a pre-requisite for the successful incorporation of new regulatory elements in this class of genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.