Ocimum is one of the most important genera of the Lamiaceae family. Several studies about basil and its popular use reveal many characteristics of the herb, including its use as antioxidant, anti-aging, antiinflammatory, anti-carcinogenic, anti-microbial, and cardiovascular agents, among others. In this paper, we evaluated genotoxic, oxidative, and anti-inflammatory parameters from the extract of Ocimum basilicum in different concentrations, using human leukocytes cultures exposed to challenging agents. Our results confirm that the O. basilicum extract acts as an antioxidant and effectively reverts or subjugates the effects of high oxidizing agents such as hydrogen peroxide. These actions are attributed to its composition, which is rich in polyphenols and flavonoids as well as compounds such as rosmarinic acid, all of which have well-known antioxidant activity. We also show that our basil extract presents anti-inflammatory properties, the mechanism of which is a composed interaction between the inhibition of pro-inflammatory mediator and the stimulation of anti-inflammatory cytokines. Although pharmacodynamics studies are necessary to evaluate the activities in vivo, our results demonstrated that basil could act as an antioxidant and anti-inflammatory and a possible alternative for medicinal treatment. Uniterms:Ocimum basilicum/evaluation. Ocimum basilicum/genotoxic effects. Ocimum basilicum/ anti-inflammatory properties. Medicinal plants/study.
Euphorbia tirucalli (L.), commonly known as aveloz, has been indiscriminately used in popular medicine to treat various illnesses. However, some components can have devastating consequences. Injury to a cell's genetic material can cause mutations, cancer, and cell death. Our main goal in this work was to evaluate the genotoxic and cytotoxic effects of E. tirucalli extract on human leukocytes. For this purpose, we performed a phytochemical analysis to evaluate the plant's components. In the second step, we treated cultured human leukocytes with different concentrations of the dry extract of the plant and then evaluated the oxidative and genotoxic profi les of these leukocytes. We found that at 1% and 10% concentrations, the aveloz extract acted as a genotoxic agent that could damage DNA and increase oxidative damage. We conclude that despite its popular use, aveloz can act as a genotoxic agent, especially when it contains phorbol ester. Aveloz's indiscriminate use might actually promote tumors and therefore carry a considerable genetic risk for its users.
The 4'-aminochalcones compounds are open-chain flavonoids structures which have shown a known array of pharmacological activities, such as antibacterial, antifungal, anti-inflammatory and antitumor effects. There is little toxicological information available about these compounds in the literature. Therefore, the investigation of toxic effects of three 4'-aminochalcone derivatives was performed using in silico and in vitro assays. In silico provided results that indicated the occurrence of mutagenic and genotoxic effects. In vitro tests, using Cellular Proliferation and Viability, Micronucleus, and DNA damage by Comet assay, showed that the compounds studied also present mutagenic and genotoxic effects, which confirm the result determined by the in silico analysis. The use of experimental and computational models is complementary to each other and the results determined for 4'-aminochalones suggest that the chalcones should also be carefully considered since they show some risks to cause toxic effects to human cells.
Danofloxacin is a veterinary fluoroquinolone used to treat respiratory and gastrointestinal diseases of birds, pigs and cattle. The literature reviewed shows some analytical methods to quantify this fluoroquinolone, but microbiological and biological safety studies are limited. The analytical methods were validated by the Official Codes. The LC-DAD method was developed and validated using an RP-18 column, mobile phase containing a mixture of 0.3% triethylamine (pH 3.0) and acetonitrile (85:15, v/v). The microbiological assay was performed by agar diffusion method (3 x 3) and Staphylococcus epidermidis as a microorganism test. Forced degradation studies were performed in both methods. The minimum inhibitory concentration (MIC) was performed by test microdilution and toxicity studies were evaluated using in silico study, cell proliferation, cell viability test, micronuclei and comet assay. LC and a microbiological assay proved linear, accurate, precise, and robust to quantify danofloxacin, but only the LC method showed selectivity to quantify the drug in the presence of its degradation products. These results demonstrate that the LC method is suitable for stability studies of danofloxacin, but a microbiological assay cannot be used to quantify the drug due to the biological activity of the photoproducts. Ex-vivo cytotoxicity and theoretical and experimental genotoxicity were also observed.
O tabagismo é considerado pela Organização Mundial de Saúde (OMS) a principal causa de morte evitável no mundo. Estima-se que um terço da população mundial adulta, um bilhão e duzentos milhões de pessoas, seja fumante. Diante desses dados, torna-se importante avaliar os danos causados pela exposição a este agente, o que inclui diferentes tipos celulares. Este estudo buscou avaliar in vitro o efeito citotóxico e os níveis de peroxidação lipídica em leucócitos humanos expostos à fumaça de cigarros simulando ambiente fechado destinado a fumantes, utilizando os testes de viabilidade celular e TBARS. Os resultados obtidos demonstraram que todas as marcas testadas causaram diminuição significativa da viabilidade leucocitária e aumento da concentração de malondialdeído, quando comparados ao controle negativo. Entretanto, esta redução da viabilidade celular não pode ser atribuía exclusivamente aos níveis de peroxidação lipídica, mas, possivelmente, ao conjunto de compostos presentes na fumaça dos cigarros, alguns destes expressos no rótulo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.