Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis.
BACKGROUND Toxoplasma gondii causes toxoplasmosis and is controlled by activated macrophages. However, infection of macrophages by tachyzoites induces TGF-β signaling (TGF-s) inhibiting nitric oxide (NO) production. NO inhibition may be a general escape mechanism of distinct T. gondii strains.OBJECTIVES To evaluate in activated macrophages the capacity of T. gondii strains of different virulence and genetics (RH, type I; ME-49, type II; VEG, type III; P-Br, recombinant) to evade the NO microbicidal defense system and determine LC3 loading to the parasitophorous vacuole.METHODS Activated peritoneal macrophages were infected with the different T. gondii strains, NO-production was evaluated by the Griess reagent, and inducible nitric oxide synthase expression, TGF-s, and LC3 localisation assayed by immunofluorescence.FINDINGS Only RH persisted in macrophages, while VEG was more resistant than P-Br and ME-49. All strains induced TGF-s, degradation of inducible nitric oxide synthase, and NO-production inhibition from 2 to 24 h of infection, but only RH sustained these alterations for 48 h. By 24 h of infection, TGF-s lowered in macrophages infected by ME-49, and P-Br, and NO-production recovered, while VEG sustained TGF-s and NO-production inhibition longer. LC3 loading to parasitophorous vacuole was strain-dependent: higher for ME-49, P-Br and VEG, lower for RH. All strains inhibited NO-production, but only RH sustained this effect probably because it persisted in macrophages due to additional evasive mechanisms as lower LC3 loading to parasitophorous vacuole.MAIN CONCLUSIONS These results support that T. gondii can escape the NO microbicidal defense system at the initial phase of the infection, but only the virulent strain sustain this evasion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.