The utilization of transgenic plants expressing recombinant antigens to be used in the formulation of experimental immunogens has been recently communicated. We report here the development of transgenic plants of alfalfa expressing the structural protein VP1 of foot and mouth disease virus (FMDV). The presence of the transgenes in the plants was confirmed by PCR and their specific transcription was demonstrated by RT-PCR. Mice parenterally immunized using leaf extracts or receiving in their diet freshly harvested leaves from the transgenic plants developed a virus-specific immune response. Animals immunized by either method elicited a specific antibody response to a synthetic peptide representing amino acid residues 135-160 of VP1, to the structural protein VP1, and to intact FMDV particles. Additionally, the immunized mice were protected against experimental challenge with the virus. We believe this is the first report demonstrating the induction of a protective systemic antibody response in animals fed transgenic plants expressing a viral antigen. These results support the feasibility of producing edible vaccines in transgenic forage plants, such as alfalfa, commonly used in the diet of domestic animals even for those antigens for which a systemic immune response is required.
Certain species of the Pooideae subfamily develop stress tolerance and herbivory resistance through symbiosis with vertically transmitted, asexual fungi. This symbiosis is specific, and genetic factors modulate the compatibility between partners. Although gene flow is clearly a fitness trait in allogamous grasses, because it injects hybrid vigor and raw material for evolution, it could reduce compatibility and thus mutualism effectiveness. To explore the importance of host genetic background in modulating the performance of symbiosis, Lolium multiflorum plants, infected and noninfected with Neotyphodium occultans, were crossed with genetically distant plants of isolines (susceptible and resistant to diclofop-methyl herbicide) bred from two cultivars and exposed to stress. The endophyte improved seedling survival in genotypes susceptible to herbicide, while it had a negative effect on one of the genetically resistant crosses. Mutualism provided resistance to herbivory independently of the host genotype, but this effect vanished under stress. While no endophyte effect was observed on host reproductive success, it was increased by interpopulation plant crosses. Neither gene flow nor herbicide had an important impact on endophyte transmission. Host fitness improvements attributable to gene flow do not appear to result in direct conflict with mutualism while this seems to be an important mechanism for the ecological and contemporary evolution of the symbiotum.
Vaccines produced in transgenic plants constitute a promising alternative to conventional immunogens, presenting the possibility of stimulating secretory and systemic immunity against enteric pathogens when administered orally. Protection against enteric pathogens affecting newborn animals requires, in most cases, the stimulation of lactogenic immunity. Here, the group presents the development of an experimental immunogen based on expression of an immunorelevant peptide, eBRV4, of the VP4 protein of bovine rotavirus (BRV), which has been described as harbouring at least one neutralizing epitope as well as being responsible for the adsorption of the virus to epithelial cells. The eBRV4 epitope was efficiently expressed in transgenic alfalfa as a translational fusion protein with the highly stable reporter enzyme b-glucuronidase (bGUS), which served as a carrier, stabilized the synthesized peptide and facilitated screening for the higher expression levels in plants. Correlation of expression of the eBRV4 epitope in plants with those presenting the highest bGUS activities was confirmed by a Western blot assay specific for the BRV peptide. The eBRV4 epitope expressed in plants was effective in inducing an anti-rotavirus antibody response in adult female mice when administered either intraperitoneally or orally and, more importantly, suckling mice born from immunized female mice were protected against oral challenge with virulent rotavirus. These results demonstrate the feasibility of inducing lactogenic immunity against an enteric pathogen using an edible vaccine produced in transgenic plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.