Strontium folate (SrFO) is a recently developed bone promoting agent with interest in medical and pharmaceutical fields due to its improved features in comparison to current strontium based therapies for osteoporosis and other bone diseases. In this work SrFO derivative was synthesized and loaded into biohybrid scaffolds obtained through lyophilisation of semi-interpenetrating networks of chitosan polyethylene glycol dimethacrylate and beta tri-calcium phosphate (βTCP) fabricated using free radical polymerization. The scaffolds were seeded with pluripotent stem cells obtained from human dental pulp and their potential to regenerate bone tissues were assessed using a critical sized defect model of calvaria in rats and compared with those obtained without SrFO. The results obtained both in vitro and in vivo demonstrated excellent cyto-compatibility with resorption of scaffolds in 4-6 weeks and a total regeneration of the defect, with a more rapid and dense bone formation in the group with SrFO. Thus, the use of stem cells sourced from human dental pulp in combination with SrFO are very promising systems for their application in compromised osseous tissue regeneration.
BackgroundNeovascularization over dental implants is an imperative requisite to achieve successful osseointegration onto implanted materials. The aim of this study was to investigate the effects on in vitro angiogenesis of anodized 70 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy synthesized and disinfected by means of a novel, facile, antibacterial and cost-effective method using super oxidized water (SOW). We also evaluated the role of the surface roughness and chemical composition of materials of materials on angiogenesis.MethodsThe Ti6Al4V alloy and a commercially pure Ti were anodized using a solution constituted by SOW and fluoride as electrolyte. An acid-etched Ti6Al4V was evaluated to compare the effect of micro-surface roughness. Mirror-polished materials were used as control. Morphology, roughness, chemistry and wettability were assessed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy (EDX) and using a professional digital camera. Bovine coronary artery endothelial cells (BCAECs) were seeded over the experimental surfaces for several incubation times. Cellular adhesion, proliferation and monolayer formation were evaluated by means of SEM. BCAEC viability, actin stress fibers and vinculin cellular organization, as well as the angiogenic receptors vascular endothelial growth factor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) were measured using fluorescence microscopy.ResultsThe anodization process significantly increased the roughness, wettability and thickness of the oxidized coating. EDX analysis demonstrated an increased oxygen (O) and decreased carbon (C) content on the NTs of both materials. Endothelial behavior was solidly supported and improved by the NTs (without significant differences between Ti and alloy), showing that endothelial viability, adhesion, proliferation, actin arrangement with vinculin expression and monolayer development were evidently stimulated on the nanostructured surface, also leading to increased activation of VEGFR2 and eNOS on Ti6Al4V-NTs compared to the control Ti6Al4V alloy. Although the rougher alloy promoted BCAECs viability and proliferation, filopodia formation was poor.ConclusionThe in vitro results suggest that 70 nm diameter NTs manufactured by anodization and cleaned using SOW promotes in vitro endothelial activity, which may improve in vivo angiogenesis supporting a faster clinical osseointegration process.
Craniofacial bone defect anomalies affect both soft and hard tissues and can be caused by trauma, bone recessions from tumors and cysts, or even from congenital disorders. On this note, cleft/lip palate is the most prevalent congenital craniofacial defect caused by disturbed embryonic development of soft and hard tissues around the oral cavity and face area, resulting in most cases, of severe limitations with chewing, swallowing, and talking as well as problems of insufficient space for teeth, proper breathing, and self-esteem problems as a consequence of facial appearance. Spectacular advances in regenerative medicine have arrived, giving new hope to patients that can benefit from new tissue engineering therapies based on the supportive action of 3D biomaterials together with the synergic action of osteo-inductive molecules and recruited stem cells that can be driven to the process of bone regeneration. However, few studies have focused on the application of tissue engineering to the regeneration of the cleft/lip and only a few have reported significant advances to offer real clinical solutions. This review provides an updated and deep analysis of the studies that have reported on the use of advanced biomaterials and cell therapies for the regeneration of cleft lip and palate regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.