The global need to transition to renewable and decentralized systems entails agricultural systems as producers of residual biomass. Avocado trees (Persea americana Mill.) are one of the main woody crops cultivated in Mexico, with over 150,000 hectares grown in the country. The aim of the present study is to evaluate the use of avocado pruning residues as an energy input, focusing on the revalorization of biomass and the generation of economic benefits for small producers in the region. For that purpose, we developed allometric equations to calculate biomass availability from pruning residues, evaluated their thermochemical properties, and proposed technological alternatives for their energy use. Two allometric equations for pruning residues as a function of tree height and crown diameter were obtained: one for light and minor maintenance pruning (R2 = 0.63) and one for rejuvenation pruning (R2 = 0.86). From these equations, we estimate the mean amount of biomass generated from light and rejuvenation pruning to be 42.7 and 25.1 kg per tree and year, respectively, which amounts to 1324 and 780 kg ha−1 DM (dry matter), with an energy potential of 26.2 and 15.4 GJ ha−1. The thermochemical analysis shows that a higher proportion of leaves generates a higher ash content, which reduces the quality of the residues as a fuel. Avocado pruning residues have high potential for energy use and could be implemented in the industrial and residential sectors, generating a complementary source of income for producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.