Genetic diversity in and relationships among 26 Creole cattle breeds from 10 American countries were assessed using 19 microsatellites. Heterozygosities, F-statistics estimates, genetic distances, multivariate analyses and assignment tests were performed. The levels of within-breed diversity detected in Creole cattle were considerable and higher than those previously reported for European breeds, but similar to those found in other Latin American breeds. Differences among breeds accounted for 8.4% of the total genetic variability. Most breeds clustered separately when the number of pre-defined populations was 21 (the most probable K value), with the exception of some closely related breeds that shared the same cluster and others that were admixed. Despite the high genetic diversity detected, significant inbreeding was also observed within some breeds, and heterozygote excess was detected in others. These results indicate that Creoles represent important reservoirs of cattle genetic diversity and that appropriate conservation measures should be implemented for these native breeds in order to minimize inbreeding and uncontrolled crossbreeding.
The main Creole pig population in Mexico, the hairless Mexican pig, remains as an unimproved and endangered genetic resource. In order to learn more about the genetic characteristics of this pig population, we assessed the allele frequency of 10 microsatellite loci in 177 unrelated hairless pigs from seven regions at Mexico and in 111 pigs of four commercial breeds (Landrace, Large White, Hampshire, and Duroc). Genetic diversity in each population was estimated by the unbiased average heterozygosity and the allele number. Nei's standard genetic distances and a neighbor-joining dendrogram were used to reveal the genetic relationships among these populations. In this report, we present data showing that the level of the genetic diversity in Mexican hairless pigs is high compared with previous reports, and that they belong to a genetic lineage divergent from commercial breeds. Furthermore, Mexican hairless pigs seem to have developed several genetically distinct lines associated with their geographic location. We conclude that the Mexican Creole pig populations may be a reservoir of genetic diversity that is important to preserve and evaluate as a source of new alleles for the future improvement of commercial pig lines.
All major ABO blood alleles are found in most populations worldwide, whereas the majority of Native Americans are nearly exclusively in the O group. O allele molecular characterization could aid in elucidating the possible causes of group O predominance in Native American populations. In this work, we studied exon 6 and 7 sequence diversity in 180 O blood group individuals from four different Mesoamerican populations. Additionally, a comparative analysis of genetic diversity and population structure including South American populations was performed. Results revealed no significant differences among Mesoamerican and South American groups, but showed significant differences within population groups attributable to previously detected differences in genetic drift and founder effects throughout the American continent. Interestingly, in all American populations, the same set of haplotypes O(1), O(1v), and O(1v(G542A)) was present, suggesting the following: (1) that they constitute the main genetic pool of the founding population of the Americas and (2) that they derive from the same ancestral source, partially supporting the single founding population hypothesis. In addition, the consistent and restricted presence of the G542A mutation in Native Americans compared to worldwide populations allows it to be employed as an Ancestry informative marker (AIM). Present knowledge of the peopling of the Americas allows the prediction of the way in which the G542A mutation could have emerged in Beringia, probably during the differentiation process of Asian lineages that gave rise to the founding population of the continent.
The Creole sheep in America is supposed to have originated specifically from the Iberian Peninsula and introduced by the Spaniards during the colonization. However, it is not clear their genetic relationship with Iberian breeds. The genetic origin and diversity of the Mexican Creole sheep (MCS) were investigated by mitochondrial DNA control region nucleotide sequences. DNA sequence from 33 MCS samples from three regions of México revealed 21 different haplotypes. Phylogenetic analysis including European and Iberian sheep haplotypes showed that the MCS population belongs to a differentiated and defined genetic lineage. This finding suggests that the MCS populations may be the result of a founder effect originating from a discrete Iberian population. MCS haplotypes were related to haplotypes found in the Churro Trunk and the Entrefino Trunk groups of Iberian breeds, supporting historical reports. In the Mexican genetic branch, there were also haplotypes reported from Lacaune and Awassi sheep breeds. Although it is uncertain whether a particular breed was involved as a founder of the MCS, these populations have a common phylogenetic origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.