Laser-induced periodic surface structures (LIPSS) can readily be fabricated in virtually all types of materials and benefit from an efficient parallel patterning strategy that exploits self-organization. The wide range of different LIPSS types with different spatial scales and symmetries is continuously growing, addressing numerous of applications. Here, we report on the formation of two fundamentally different types of LIPSS on germanium upon exposure to femtosecond laser pulses (λ = 800 nm, 130 fs), featuring different periods and orthogonal orientations. On the one hand, the well-known low-spatial frequency LIPSS (LSFL) with a period ≈ λ and perpendicular orientation to the laser polarization are formed, which can be extended homogeneously in 2D by sample scanning. Additionally, extremely smooth ripples with a period ≈λ/2 and parallel orientation were generated at lower pulse numbers. We show that this new kind of ripples, named parallel high-spatial frequency LIPSS (HSFL-∥), can be superimposed onto LSFL by increasing the pulse number, forming complex dual LIPSS with nanohill-like morphology. While exposure to multiple nanosecond laser pulses is found to trigger also the formation of LSFL, HSFL-∥ cannot be formed under these conditions, which points out the role of ultrafast excitation in the formation of the latter. By performing time-resolved reflectivity measurements, we are able to resolve the melting and solidification dynamics, revealing melting of a very shallow surface layer (<20 nm) and melt durations of a few ns for both pulse durations pulses at the fluences employed for LIPSS formation. Finally, we demonstrate erasure of both types of LIPSS by exposure to single nanosecond pulses at high fluences, which paves the way for erasable multi-level data storage.
We have investigated the formation of laser-induced periodic surface structures (LIPSS or "ripples") on silicon upon excitation with p-polarized excimer laser pulses in the deep ultraviolet region (λ = 193 nm, 20 ns). Well-pronounced ripples with a period close to the laser wavelength were observed for pulse numbers N ≥ 100, and the ripple period increased with the angle of incidence. While these results seem to be qualitatively consistent with the standard Sipe-theory, we observed a fundamentally different ripple formation mechanism and ripple morphology. At low pulse numbers, isolated nanoparticles with a size of a few tens of nanometers are observed at the silicon surface, which then start to agglomerate in 2D and self-organize to form ripples with a very shallow modulation depth as the pulse number increases. Employing a recently developed plasmonic model based on the propagation of a surface plasmon polariton on a rough surface, we demonstrate excellent quantitative agreement of the evolution of the ripple period with incidence angle. Finally, we show that surface regions exposed to lower laser fluence feature micro-and nanopores, which give rise to pronounced photoluminescence (PL) emission in the visible spectral region, as opposed to the nanoparticle-based ripples not showing PL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.