BackgroundCampylobacter jejuni is the most common bacterial cause of human gastroenteritis worldwide. Due to the sporadic nature of infection, sources often remain unknown. Multilocus sequence typing (MLST) has been successfully applied to population genetics of Campylobacter jejuni and mathematical modelling can be applied to the sequence data. Here, we analysed the population structure of a total of 250 Finnish C. jejuni isolates from bovines, poultry meat and humans collected in 2003 using a combination of Bayesian clustering (BAPS software) and phylogenetic analysis.ResultsIn the first phase we analysed sequence types (STs) of 102 Finnish bovine C. jejuni isolates by MLST and found a high diversity totalling 50 STs of which nearly half were novel. In the second phase we included MLST data from domestic human isolates as well as poultry C. jejuni isolates from the same time period. Between the human and bovine isolates we found an overlap of 72.2%, while 69% of the human isolates were overlapping with the chicken isolates. In the BAPS analysis 44.3% of the human isolates were found in bovine-associated BAPS clusters and 45.4% of the human isolates were found in the poultry-associated BAPS cluster. BAPS reflected the phylogeny of our data very well.ConclusionsThese findings suggest that bovines and poultry were equally important as reservoirs for human C. jejuni infections in Finland in 2003. Our results differ from those obtained in other countries where poultry has been identified as the most important source for human infections. The low prevalence of C. jejuni in poultry flocks in Finland could explain the lower attribution of human infection to poultry. Of the human isolates 10.3% were found in clusters not associated with any host which warrants further investigation, with particular focus on waterborne transmission routes and companion animals.
We describe the long-term multilocus sequence typing (MLST) analysis of the population structure and dynamics of 454 Finnish human Campylobacter jejuni isolates, as well as 208 chicken isolates, collected during the mid-1990s to 2007. The sequence type clonal complexes (ST CC) ST-45 CC, ST-21 CC, and ST-677 CC were the most common ones found among all isolates, and they covered 73.9% of all isolates. The ST-283 CC also was found frequently among chicken isolates (8.2%). The predominant STs among all isolates were ST-45, ST-50, and ST-677. ST-137 and ST-230 were common among human isolates, and ST-267 was found more frequently among chicken isolates than human isolates. The ST-45 CC was significantly associated with chicken isolates (P < 0.01), whereas the ST-21 CC was associated with human isolates (P < 0.001). The ST-677 CC was not associated with any host (P ؍ 0.5), and an opposite temporary trend of this complex was seen among chicken and human isolates, with an increase in the former and a decrease in the latter during the study period. Furthermore, the ST-22 and ST-48 CCs were significantly associated with human isolates (P < 0.01), but neither of the CCs was found in chicken isolates. The annual overlap between STs from human and chicken isolates decreased from 76% at the beginning of the study to 58% at the end. Our results suggest that the importance of chicken as a reservoir for strains associated with human infections has declined despite the consumption of domestic chicken meat increasing during the follow-up period by 83%.
BackgroundWaterborne Campylobacter jejuni outbreaks are common in the Nordic countries, and PFGE (pulsed field gel electrophoresis) remains the genotyping method of choice in outbreak investigations. However, PFGE cannot assess the clonal relationship between isolates, leading to difficulties in molecular epidemiological investigations. Here, we explored the applicability of whole genome sequencing to outbreak investigation by re-analysing three C. jejuni strains (one isolated from water and two from patients) from an earlier resolved Finnish waterborne outbreak from the year 2000.ResultsOne of the patient strains had the same PFGE profile, as well as an identical overall gene synteny and three polymorphisms in comparison with the water strain. However, the other patient isolate, which showed only minor differences in the PFGE pattern relative to the water strain, harboured several polymorphisms as well as rearrangements in the integrated element CJIE2. We reconstructed the genealogy of these strains with ClonalFrame including in the analysis four C. jejuni isolated from chicken in 2012 having the same PFGE profile and sequence type as the outbreak strains. The three outbreak strains exhibited a paraphyletic relationship, implying that the drinking water from 2000 was probably contaminated with at least two different, but related, C. jejuni strains.ConclusionsOur results emphasize the capability of whole genome sequencing to unambiguously resolve the clonal relationship between isolates of C. jejuni in an outbreak situation and evaluate the diversity of the C. jejuni population.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-768) contains supplementary material, which is available to authorized users.
Helicobacter bizzozeronii remains the only "H. heilmannii" species isolated from human gastric mucosa although it has been an infrequent observation among "H. heilmannii"-infected patients in PCR-based screening studies. The relevance of H. bizzozeronii and other potentially zoonotic gastric Helicobacter spp. in human disease remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.