Many applications rely on Web data and extraction systems to accomplish knowledge-driven tasks. Web information is not curated, so many sources provide inaccurate, or conflicting information. Moreover, extraction systems introduce additional noise to the data. We wish to automatically distinguish correct data and erroneous data for creating a cleaner set of integrated data. Previous work has shown that a naïve voting strategy that trusts data provided by the majority or at least a certain number of sources may not work well in the presence of copying between the sources. However, correlation between sources can be much broader than copying: sources may provide data from complementary domains (negative correlation), extractors may focus on different types of information (negative correlation), and extractors may apply common rules in extraction (positive correlation, without copying). In this paper we present novel techniques modeling correlations between sources and applying it in truth finding. We provide a comprehensive evaluation of our approach on three real-world datasets with different characteristics, as well as on synthetic data, showing that our algorithms outperform the existing state-of-the-art techniques.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.