Background: The objective of the study was to identify the factors that alter the length of hospital stay of COVID-19 patients so we have an estimate of the duration of hospitalization of patients. To achieve this, we used a time to event analysis to arrive at factors that could alter the length of hospital stay, aiding in planning additional beds for any future rise in cases. Methods: Information about COVID-19 patients was collected between June and August 2020. The response variable was the time from admission to discharge of patients. Cox proportional hazard model was used to identify the factors that were associated with the length of hospital stay. Results: A total of 730 COVID-19 patients were included, of which 675 (92.5%) recovered and 55 (7.5%) were considered to be right-censored, that is, the patient died or was discharged against medical advice. The median length of hospital stay of COVID-19 patients who were hospitalized was found to be 7 days by the Kaplan Meier curve. The covariates that prolonged the length of hospital stay were found to be abnormalities in oxygen saturation (HR = 0.446, P < .001), neutrophil-lymphocyte ratio (HR = 0.742, P = .003), levels of D-dimer (HR = 0.60, P = .002), lactate dehydrogenase (HR = 0.717, P = .002), and ferritin (HR = 0.763, P = .037). Also, patients who had more than 2 chronic diseases had a significantly longer length of stay (HR = 0.586, P = .008) compared to those with no comorbidities. Conclusion: Factors that are associated with prolonged length of hospital stay of patients need to be considered in planning bed strength on a contingency basis.
Objective To identify factors associated with recovery time from coronavirus disease 2019 (COVID-19). Methods In this retrospective study, data for patients with COVID-19 were obtained between 21 June and 30 August 2020. An accelerated failure time (AFT) model was used to identify covariates associated with recovery time (days from hospital admission to discharge). AFT models with different distributions (exponential, log-normal, Weibull, generalized gamma, and log-logistic) were generated. Akaike’s information criterion (AIC) was used to identify the most suitable model. Results A total of 730 patients with COVID-19 were included (92.5% recovered and 7.5% censored). Based on its low AIC value, the log-logistic AFT model was the best fit for the data. The covariates affecting length of hospital stay were oxygen saturation, lactate dehydrogenase, neutrophil-lymphocyte ratio, D-dimer, ferritin, creatinine, total leucocyte count, age > 80 years, and coronary artery disease. Conclusions The log-logistic AFT model accurately described the recovery time of patients with COVID-19.
Cluster analysis in microarray gene expression studies is used to find groups of correlated and co-regulated genes. Several clustering algorithms are available in the literature. However no single algorithm is optimal for data generated under different technological platforms and experimental conditions. It is possible to combine several clustering methods and solutions using an ensemble approach. The method also known as consensus clustering is used here to examine the robustness of cluster solutions from several different algorithms. The method proposed here also is useful for estimating the number of clusters in a dataset. Here we examine the properties of consensus clustering using real and simulated datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.