<span lang="EN-US">The autoregressive integrated moving average (ARIMA) method has been used to model global navigation satellite systems (GNSS) measurement errors. Most ARIMA error models describe time series data of static GNSS receivers. Its application for modeling of GNSS under dynamic tests is not evident. In this paper, we aim to describe real time kinematic-GNSS (RTK-GNSS) errors during dynamic tests using linear regression with ARIMA errors to establish a proof of concept via simulation that measurement errors along a trajectory logged by the RTK-GNSS can be “filtered”, which will result in improved positioning accuracy. Three sets of trajectory data of an RTK-GNSS logged in a multipath location were collected. Preliminary analysis on the data reveals the inability of the RTK-GNSS to achieve fixed integer solution most of the time, along with the presence of correlated noise in the error residuals. The best linear regression models with ARIMA errors for each data set were identified using the Akaike information criterion (AIC). The models were implemented via simulations to predict improved coordinate points. Evaluation on model residuals using autocorrelation, partial correlation, scatter plot, quantile-quantile (QQ) plot and histogram indicated that the models fitted the data well. Mean absolute errors were improved by up to 57.35% using the developed models.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.