BackgroundMalarial incidence, severity, dynamics and distribution of malaria are strongly determined by climatic factors, i.e., temperature, precipitation, and relative humidity. The objectives of the current study were to analyse and model the relationships among climate, vector and malaria disease in district of Visakhapatnam, India to understand malaria transmission mechanism (MTM).MethodologyEpidemiological, vector and climate data were analysed for the years 2005 to 2011 in Visakhapatnam to understand the magnitude, trends and seasonal patterns of the malarial disease. Statistical software MINITAB ver. 14 was used for performing correlation, linear and multiple regression analysis.Results/FindingsPerennial malaria disease incidence and mosquito population was observed in the district of Visakhapatnam with peaks in seasons. All the climatic variables have a significant influence on disease incidence as well as on mosquito populations. Correlation coefficient analysis, seasonal index and seasonal analysis demonstrated significant relationships among climatic factors, mosquito population and malaria disease incidence in the district of Visakhapatnam, India. Multiple regression and ARIMA (I) models are best suited models for modeling and prediction of disease incidences and mosquito population. Predicted values of average temperature, mosquito population and malarial cases increased along with the year. Developed MTM algorithm observed a major MTM cycle following the June to August rains and occurring between June to September and minor MTM cycles following March to April rains and occurring between March to April in the district of Visakhapatnam. Fluctuations in climatic factors favored an increase in mosquito populations and thereby increasing the number of malarial cases. Rainfall, temperatures (20°C to 33°C) and humidity (66% to 81%) maintained a warmer, wetter climate for mosquito growth, parasite development and malaria transmission.Conclusions/SignificanceChanges in climatic factors influence malaria directly by modifying the behaviour and geographical distribution of vectors and by changing the length of the life cycle of the parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.