BackgroundThe Signal Transducer and Activator of Transcription 1 (STAT1) has traditionally been regarded as a transmitter of interferon signaling and a pro-apoptotic tumour suppressor. Recent data have identified new functions of STAT1 associated with tumourigenesis and resistance to genotoxic stress, including ionizing radiation (IR) and chemotherapy. To investigate the mechanisms contributing to the tumourigenic functions of STAT1, we performed a combined transcriptomic-proteomic expressional analysis and found that STAT1 is associated with regulation of energy metabolism with potential implication in the Warburg effect.MethodsWe generated a stable knockdown of STAT1 in the SCC61 human squamous cell carcinoma cell line, established tumour xenografts in athymic mice, and compared transcriptomic and proteomic profiles of STAT1 wild-type (WT) and knockdown (KD) untreated or irradiated (IR) tumours. Transcriptional profiling was based on Affymetrix Human GeneChip® Gene 1.0 ST microarrays. Proteomes were determined from the tandem mass spectrometry (MS/MS) data by searching against the human subset of the UniProt database. Data were analysed using Significance Analysis of Microarrays for ribonucleic acid and Visualize software for proteins. Functional analysis was performed with Ingenuity Pathway Analysis with statistical significance measured by Fisher's exact test.ResultsKnockdown of STAT1 led to significant growth suppression in untreated tumours and radio sensitization of irradiated tumours. These changes were accompanied by alterations in the expression of genes and proteins of glycolysis/gluconeogenesis (GG), the citrate cycle (CC) and oxidative phosphorylation (OP). Of these pathways, GG had the most concordant changes in gene and protein expression and demonstrated a STAT1-dependent expression of genes and proteins consistent with tumour-specific glycolysis. In addition, IR drastically suppressed the GG pathway in STAT1 KD tumours without significant change in STAT1 WT tumours.ConclusionOur results identify a previously uncharacterized function of STAT1 in tumours: expressional regulation of genes encoding proteins involved in glycolysis, the citrate cycle and mitochondrial oxidative phosphorylation, with predominant regulation of glycolytic genes. STAT1-dependent expressional regulation of glycolysis suggests a potential role for STAT1 as a transcriptional modulator of genes responsible for the Warburg effect.
BackgroundTraditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress.Methodology/Principal FindingsHere we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1H genotype) are selected by the lung microenvironment. STAT1H tumor cells also demonstrate resistance to IFN-gamma (IFNγ), ionizing radiation (IR), and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1L genotype). Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress.ConclusionsOur results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization.
Introduction Reliable characterization of a hypertrophic scar (HTS) is integral to epidemiologic studies designed to identify clinical and genetic risk factors for HTS. The Vancouver Scar Scale (VSS) has been widely used for this purpose; however, no publication has defined what score on this scale corresponds to a clinical diagnosis of HTS. Methods In a survey of 1000 burn care providers, we asked respondents what VSS score indicates a HTS and asked them to score scar photos using the VSS. We used receiver-operating-characteristic (ROC) curves to evaluate VSS subscores and their combinations in diagnosis of HTS. Results Of 130 responses (13.5%), most were physicians (43.9%) who had worked in burn care for over 10 years (63.1%) and did not use the VSS in clinical practice (58.5%). There was no consensus as to what VSS score indicates a diagnosis of HTS. VSS height score (0–3) performed best for diagnosis of HTS; using a cut-off of ≥1, height score was 99.5% sensitive and 85.9% specific for HTS. Conclusions Burn clinicians do not routinely use the VSS and perceptions vary widely regarding what constitutes a HTS. When a dichotomous variable is needed, the VSS height score with a cut-off of ≥1 may be optimal. Our findings underscore the need for an objective tool to reproducibly characterize HTS across burn centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.