The application of stochastic models and analysis techniques to large datasets is now commonplace. Unfortunately, in practice this usually means extracting data from a database system into an external tool (such as SAS, R, Arena, or Matlab), and then running the analysis there. This extract-and-model paradigm is typically error-prone, slow, does not support fine-grained modeling, and discourages what-if and sensitivity analyses.
In this article we describe MCDB, a database system that permits a wide spectrum of stochastic models to be used in conjunction with the data stored in a large database, without ever extracting the data. MCDB facilitates in-database execution of tasks such as risk assessment, prediction, and imputation of missing data, as well as management of errors due to data integration, information extraction, and privacy-preserving data anonymization. MCDB allows a user to define “random” relations whose contents are determined by stochastic models. The models can then be queried using standard SQL. Monte Carlo techniques are used to analyze the probability distribution of the result of an SQL query over random relations. Novel “tuple-bundle” processing techniques can effectively control the Monte Carlo overhead, as shown in our experiments.
Enterprises often need to assess and manage the risk arising from uncertainty in their data. Such uncertainty is typically modeled as a probability distribution over the uncertain data values, specified by means of a complex (often predictive) stochastic model. The probability distribution over data values leads to a probability distribution over database query results, and risk assessment amounts to exploration of the upper or lower tail of a query-result distribution. In this paper, we extend the Monte Carlo Database System to efficiently obtain a set of samples from the tail of a query-result distribution by adapting recent "Gibbs cloning" ideas from the simulation literature to a database setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.