Perovskite structure is one of the five symmetry families suitable for exhibiting topological insulator phase. However, none of the halides and oxides stabilizing in this structure exhibit the same. Through density functional calculations on cubic perovskites (CsSnX3; X = Cl, Br, and I), we predict a band insulator -Dirac semimetal -topological insulator phase transition with uniform compression. With the aid of a Slater-Koster tight binding Hamiltonian, we show that, apart from the valence electron count, the band topology of these perovksites is determined by five parameters involving electron hopping among the Sn-{s, p} orbitals. These parameters monotonically increase with pressure to gradually transform the positive band gap to a negative one and thereby enable the quantum phase transition. The universality of the mechanism of phase transition is established by examining the band topology of Bi based oxide perovskites. Dynamical stability of the halides against pressure strengthens the experimental relevance.
Halide perovskite materials recently attracted wide attention for light-emitting applications. The intense white light emission and excited state lifetimes greater than 1 μs are the hallmarks of a good light-emitting material. Here, we provide a clear design strategy to achieve both of these aforementioned properties in a single material via the introduction of octahedral asymmetry in halide double perovskites Cs2AgMCl6 through iso-trivalent substitution at the M site. In the substituted Cs2AgMCl6, the presence of mixed M3+ sites distorts the [AgCl6]5- octahedra, affecting the parity of the valence and conduction band edges and thereby altering the optical transitions. The distortion also creates a local polarization that leads to an effective photogenerated carrier separation. Considering perovskite series with three M3+ cations, namely Bi3+, In3+ and Sb3+, the mixed trivalent cationic compounds with specific ratios of In3+ and Bi3+ show white light emission with intensity nearly 150 times larger than that of the parent compounds, and are characterised by excited state lifetimes nearing 1 μs. Using single crystal X-ray diffraction, far-infrared absorption, steady-state and time-resolved photoluminescence, bias-dependent photoluminescence, P-E loop traces and density-functional theory calculations, we hence demonstrate the role of octahedral distortion in enhancing white light emission and excited state lifetimes of halide double perovskites.
Density functional calculations and model tight-binding Hamiltonian studies are carried out to examine the bulk and surface electronic structure of the largely unexplored perovskite family of ABiO3, where A is a group I-II element. From the study, we reveal the existence of two TI states, one in valence band (V-TI) and the other in conduction band (C-TI), as the universal feature of ABiO3. The V-TI and C-TI are, respectively, born out of bonding and antibonding states caused by Bi-{s,p} -O-{p} coordinated covalent interactions. Further, we outline a classification scheme in this family where one class follows spin orbit coupling and the other follows the second neighbor Bi-Bi hybridization to induce s-p band inversion for the realization of C-TI states. Below a certain critical thickness of the film, which varies with A, TI states of top and bottom surfaces couple to destroy the Dirac type linear dispersion and consequently to open narrow surface energy gaps.
Electronic structure of strongly correlated transition metal oxides (TMOs) is a complex phenomenon due to competing interaction among the charge, spin, orbital and lattice degrees of freedom. Often individual compounds are examined to explain certain properties associated with these compounds or in rare cases few members of a family are investigated to define a particular trend exhibited by that family. Here, with the objective of generalization, we have investigated the electronic structure of three families of compounds, namely, highly symmetric cubic mono-oxides, symmetrylowered spinels and asymmetric olivine phosphates, through density functional calculations. From the results we have developed empirical hypotheses involving electron hopping, electron-lattice coupling, Hund's rule coupling, strong correlation and d-band filling. These hypotheses, classified through the point group symmetry of the transition metal -oxygen complexes, can be useful to understand and predict the electronic and magnetic structure of 3d TMOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.