Thyroid cancer is one of the most common cancers, with a global increase in incidence rate for both genders. Ultrasound-guided fine-needle aspiration is the current gold standard to diagnose thyroid cancers, but the results are inaccurate, leading to repeated biopsies and unnecessary surgeries. To reduce the number of unnecessary biopsies, we explored the use of multiparametric photoacoustic (PA) analysis in combination with the American Thyroid Association (ATA) Guideline (ATAP). In this study, we performed in vivo multispectral PA imaging on thyroid nodules from 52 patients, comprising 23 papillary thyroid cancer (PTC) and 29 benign cases. From the multispectral PA data, we calculated hemoglobin oxygen saturation level in the nodule area, then classified the PTC and benign nodules with multiparametric analysis. Statistical analyses showed that this multiparametric analysis of multispectral PA responses could classify PTC nodules. Combining the photoacoustically indicated probability of PTC and the ATAP led to a new scoring method that achieved a sensitivity of 83% and a specificity of 93%. This study is the first multiparametric analysis of multispectral PA data of thyroid nodules with statistical significance. As a proof of concept, the results show that the proposed new ATAP scoring can help physicians examine thyroid nodules for fine-needle aspiration biopsy, thus reducing unnecessary biopsies. Significance: This report highlights a novel photoacoustic scoring method for risk stratification of thyroid nodules, where malignancy of the nodules can be diagnosed with 83% sensitivity and 93% specificity.
The 2019 novel coronavirus (COVID-19) has spread rapidly all over the world. The standard test for screening COVID-19 patients is the polymerase chain reaction test. As this method is time consuming, as an alternative, chest X-rays may be considered for quick screening. However, specialization is required to read COVID-19 chest X-ray images as they vary in features. To address this, we present a multi-channel pre-trained ResNet architecture to facilitate the diagnosis of COVID-19 chest X-ray. Three ResNet-based models were retrained to classify X-rays in a one-against-all basis from (a) normal or diseased, (b) pneumonia or non-pneumonia, and (c) COVID-19 or non-COVID19 individuals. Finally, these three models were ensembled and fine-tuned using X-rays from 1579 normal, 4245 pneumonia, and 184 COVID-19 individuals to classify normal, pneumonia, and COVID-19 cases in a one-against-one framework. Our results show that the ensemble model is more accurate than the single model as it extracts more relevant semantic features for each class. The method provides a precision of 94% and a recall of 100%. It could potentially help clinicians in screening patients for COVID-19, thus facilitating immediate triaging and treatment for better outcomes.
In the clinical photoacoustic (PA) imaging, ultrasound (US) array transducers are typically used to provide B-mode images in real-time. To form a B-mode image, delay-and-sum (DAS) beamforming algorithm is the most commonly used algorithm because of its ease of implementation. However, this algorithm suffers from low image resolution and low contrast drawbacks. To address this issue, delay-multiply-and-sum (DMAS) beamforming algorithm has been developed to provide enhanced image quality with higher contrast, and narrower main lobe compared but has limitations on the imaging speed for clinical applications. In this paper, we present an enhanced real-time DMAS algorithm with modified coherence factor (CF) for clinical PA imaging of humans in vivo . Our algorithm improves the lateral resolution and signal-to-noise ratio (SNR) of original DMAS beamformer by suppressing the background noise and side lobes using the coherence of received signals. We optimized the computations of the proposed DMAS with CF (DMAS-CF) to achieve real-time frame rate imaging on a graphics processing unit (GPU). To evaluate the proposed algorithm, we implemented DAS and DMAS with/without CF on a clinical US/PA imaging system and quantitatively assessed their processing speed and image quality. The processing time to reconstruct one B-mode image using DAS, DAS with CF (DAS-CF), DMAS, and DMAS-CF algorithms was 7.5, 7.6, 11.1, and 11.3 ms, respectively, all achieving the real-time imaging frame rate. In terms of the image quality, the proposed DMAS-CF algorithm improved the lateral resolution and SNR by 55.4% and 93.6 dB, respectively, compared to the DAS algorithm in the phantom imaging experiments. We believe the proposed DMAS-CF algorithm and its real-time implementation contributes significantly to the improvement of imaging quality of clinical US/PA imaging system.
Visualizing ocular vasculature is important in clinical ophthalmology because ocular circulation abnormalities are early signs of ocular diseases. Photoacoustic microscopy (PAM) images the ocular vasculature without using exogenous contrast agents, avoiding associated side effects. Moreover, 3D PAM images can be useful in understanding vessel-related eye disease. However, the complex structure of the multi-layered vessels still present challenges in evaluating ocular vasculature. In this study, we demonstrate a new method to evaluate blood circulation in the eye by combining in vivo PAM imaging and an ocular surface estimation method based on a machine learning algorithm: a random sample consensus algorithm. By using the developed estimation method, we were able to visualize the PA ocular vascular image intuitively and demonstrate layer-by-layer analysis of injured ocular vasculature. We believe that our method can provide more accurate evaluations of the eye circulation in ophthalmic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.