Changes in the oxygenation state of microenvironments within solid tumors are associated with the development of aggressive cancer phenotypes. Factors that influence cellular hypoxia have been characterized; however, methods for measuring the dynamics of oxygenation at a cellular level in vivo have been elusive. We report a series of tellurium‐containing isotopologous probes for cellular hypoxia compatible with mass cytometry (MC)—technology that allows for highly parametric interrogation of single cells based on atomic mass spectrometry. Sequential labeling with the isotopologous probes (SLIP) in pancreatic tumor xenograft models revealed changes in cellular oxygenation over time which correlated with the distance from vasculature, the proliferation of cell populations, and proximity to necrosis. SLIP allows for capture of spatial and temporal dynamics in vivo using enzyme activated probes.
Mass cytometry (MC) offers unparalleled potential for the development of highly parameterized assays for characterization of single cells within heterogeneous populations. Current reagents compatible with MC analysis employ antibody-metal-chelating polymer conjugates to report on the presence of biomarkers. Here, we expand the utility of MC by developing the first activity-based probe designed specifically for use with the technology. A compact MC-detectable telluroether is linked to a bioreductively sensitive 2-nitroimidazole scaffold, thereby generating a probe sensitive to cellular hypoxia. The probe exhibits low toxicity and is able to selectively label O 2 -deprived cells. A proof-of-concept experiment employing metal-bound DNA intercalators demonstrates that a heterogeneous mixture of cells with differential exposure to O 2 can be effectively discriminated by the quantity of tellurium-labeling. The organotellurium reagents described herein provide a general approach to the development of a large toolkit of MC-compatible probes for activity-based profiling of single cells.
Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data implicates E2F Targets pathway activity as a surrogate of OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) are strongly correlated with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.