This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
In this paper we derive a system of differential equations on time scales of the Solow type corresponding to a production function depending on several capitals. A sufficient condition for the exponential stability of the steady-state solution with positive coordinates is proved. The obtained results are applied to the case of the Cobb-Douglas type production function. Mathematics subject classification (2010): 34N05, 26E70, 97E40, 97M10.
In this survey paper, we shall establish sufficient conditions for the existence and uniqueness of solutions for various classes of initial and boundary value problem for fractional differential equations and inclusions involving the Caputo fractional derivative. The both cases of convex and nonconvex valued right hand side are considered. The topological structure of the set of solutions is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.