Day to day to electrical power demand increases very rapidly with linear and non-linear load demands. Especially the nonlinear loads are creating the harmonics in the current and voltage signals. The current and voltage signal values are measured with the phasor measurement unit (PMU) for the proper magnitude and phase angle calculation even in the presence of harmonic components in the signals. The performance of the PMU is depending upon the phasor calculation technique. Different technique/methods are available for the phasor calculation, from the method to method there is difference in the accuracy, phasor computation time and complexity. In this paper various techniques for phasor calculation are presented. For better performance of PMU, more accurate and less computation time for phasor calculation technique is required. But in real time, accuracy and speed both may not satisfied with single technique. Need to find a satisfactory technique, which satisfies the speed of phasor computation and accuracy. In this paper it is proposed that direct phasor estimation technique, which gives the better results in terms of accuracy and time and this method, satisfies the requirements for the dynamic monitoring of power system according to the IEEE std. C37.118.1-2011.
The main aim of this paper is building of a small micro grid test bed system with a few sources, and few loads with various types of lumped resistive (R), capacitive (C) and inductive (L) elements. Before the advent of electric smart grid every load is facilitated with its own electromagnetic. Slowly with an advancement of protection system numerical relays came into existence. Because in the numerical relays the communication between the relays and communication with central computer is possible, with this a coordinative protection system was evolved. For the monitoring and protection of system in dynamic state many of the numerical relays were now replaced by intelligent electronic devices. The system is to be centrally controlled with an improvement in data communications and the artificial intelligence into power system made it is possible to control the power system centrally. In this paper, it is presented that the fault is monitoring and protection against different types of faults, such as frequency variations, voltage variations and different fault conditions using fuzzy based expert system (FBES). The proposed protection scheme is adaptive for frequency variations, voltage variations and fault levels. The FBES scheme is implemented in the LabVIEW software with MAMDANI structure.
In the recent years the monitoring and operation of the power system became complex, due to the more demand from the different linear and non-linear loads and generation from the different sources. For the effective monitoring and operation of the power system, existing power system monitoring methods need to improve or new technologies are required. For the effective monitoring and operation of the power system phasor measurement unit (PMU) based monitoring is suitable, because it provide the dynamic state monitoring system. In this paper PMU based monitoring is proposed with effective data storage system and protection. With this method phasor values of voltage and current signals are calculated at the location of PMU and with the help of software based program effective data storage also possible. With this proposed model the phasor values in the power system at different locations monitoring also possible and required phasor data only stored and total data is only monitored. The phasor values of signals are calculated with direct phasor measurement technique in LabVIEW and by adding time stamping to the each phasor value accurate measurement of power flow is possible.
In this paper a hybrid DFT phasor calculation method is presented. This method is used to calculate the fundamental component phasor value of the harmonic signal without any physical filter. With this method the computational time for each phasor value calculation is reduced and the calculated phasor value has the constant magnitude and rotating phase angle. This calculated phasor values are used for the disturbance or fault identification in the power system based on Total Vector Error (TVE). The %TVE-based fault identification is more effective, because the TVE value is calculated with reference phasor value. If any fault/disturbance occurs or frequency changes then %TVE value changes. This change in TVE value is reflected in the calculation of the next sample (1/f.*N sec), giving the advantage to this method as compared to the other magnitude-based fault identification systems. Normally with the phasor calculation large data is produced, which requires large memory for the storage of this data and makes the analysis difficult. To avoid large data storage system conditional-based data storage system is proposed, where the data is stored during only the disturbance conditions or at every one second. With this technique, the data to be stored is reduced and the analysis of this data also becomes simpler for the post disturbance and for future load prediction. The performance of the proposed method is evaluated in terms of accuracy of calculation and its implementation ability. The simulation results are as per the IEEE C37.118.1a2014 for the power system monitoring and fault identification.
This paper deals with the power system operation, frequency error and voltage control problems. In actual power system operations the load is changing continuously and randomly. As the ability of the generation to trace the change in load is limited due to physical/technical considerations. They result an imbalance between actual and the scheduled generation quantities. This imbalance leads to a frequency error and voltage problems. In general, as the speed of the machine depends on the frequency, any deviation in the frequency may lead to mal-operation of the system. So load frequency control is the key problem in the power system. For specified power rating of the machine the voltage should maintain constant otherwise the system insulation may get damage. In modern power system multi area inter connected systems are used for more reliability and economic purpose. In the multi area inter connected systems the frequency errors and voltage problems can be effectively decreased by using fuzzy logic controller with either of the 3, 5 or 7 membership functions. Here this fuzzy logic controller action also compared with automatic generation control and PI controllers also. By using fuzzy logic controller the frequency error, settling time, peak overshoot, under overshoots are effectively reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.