Kalman Filter (KF) is the most widely used estimator to estimate and track the states of target. It works well when noise parameters and system models are well defined in advance. Its performance degrades and starts diverging when noise parameters (mainly measurement noise) changes. In the open literature available researchers has used the concept of Fractional Order Kalman Filter (FOKF) to stabilize the KF. However in the practical application there is a variation in the measurement noise, which will leads to divergence and degradation in the FOKF approach. An Innovation Adaptive Estimation (IAE) based FOKF algorithm is presented in this paper. In order to check the stability of the proposed method, Lyapunov theory is used. Position tracking simulation has been performed for performance evaluation, which shows the better result and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.