Keen interest in the development and utilization of renewable distributed generation (DG) has been currently observed worldwide. The reliability impact of this highly variable energy source is an important aspect that needs to be assessed as renewable power penetration becomes increasingly significant. Distribution system adequacy assessment including wind-based and solar DG units during different modes of operation is described in this paper. Monte Carlo simulation (MCS) and analytical technique are used in this work with a novel utilization of the clearness index probability density function (pdf) to model the solar irradiance using MCS. The results show that there is no significant difference between the outcomes of the two proposed techniques; however, MCS requires much longer computational time. The effect of islanding appears in the improvement of the loss of load expectation (LOLE) and loss of energy expectation (LOEE).
This paper presents a robust control scheme for high power quality grid connection of inductor-capacitor-inductor (LCL)-filtered distributed generation (DG) inverters. The presence of the LCL filter complicates the dynamics of the inverter control system, particularly when the uncertain nature of the grid background distortion and system parameters is considered. The proposed scheme addresses such practical difficulties by providing: 1) robust and simple active damping control performance under grid and filter parameter variation; 2) suppression of gridinduced distortion without a-priori knowledge of the grid background distortion and unbalance via real-time generation of the frequency modes and disturbances that should be eliminated from the closed-loop current control system; 3) robust deadbeat digital control performance that maximizes the dynamic performance of the converter; and 4) robustness against interaction dynamics between active damping and current tracking controllers. Furthermore, the proposed control scheme facilitates line-voltage sensorless current control and grid-synchronization performance, which enhances the reliability and cost measures of the DG interface. Theoretical analysis and comparative evaluation results are presented to demonstrate the effectiveness of the proposed control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.