The exosome complex plays a central and essential role in RNA metabolism. However, comprehensive studies of exosome substrates and functional analyses of its subunits are lacking. Here, we demonstrate that as opposed to yeast and metazoans the plant exosome core possesses an unanticipated functional plasticity and present a genome-wide atlas of Arabidopsis exosome targets. Additionally, our study provides evidence for widespread polyadenylation- and exosome-mediated RNA quality control in plants, reveals unexpected aspects of stable structural RNA metabolism, and uncovers numerous novel exosome substrates. These include a select subset of mRNAs, miRNA processing intermediates, and hundreds of noncoding RNAs, the vast majority of which have not been previously described and belong to a layer of the transcriptome that can only be visualized upon inhibition of exosome activity. These first genome-wide maps of exosome substrates will aid in illuminating new fundamental components and regulatory mechanisms of eukaryotic transcriptomes.
In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPE-DICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct shoot architecture. We have characterized two additional BEL1-LIKE HOMEODOMAIN (BLH) proteins, SAWTOOTH1 (BLH2/SAW1) and SAWTOOTH2 (BLH4/SAW2) that, in contrast with BLR, are expressed in lateral organs and negatively regulate BP expression. saw1 and saw2 single mutants have no obvious phenotype, but the saw1 saw2 double mutant has increased leaf serrations and revolute margins, indicating that SAW1 and SAW2 act redundantly to limit leaf margin growth. Consistent with this hypothesis, overexpression of SAW1 suppresses overall growth of the plant shoot. BP is ectopically expressed in the leaf serrations of saw1 saw2 double mutants. Ectopic expression of Class 1 KNOX genes in leaves has been observed previously in loss-of-function mutants of ASYMMETRIC LEAVES (AS1). Overexpression of SAW1 in an as1 mutant suppresses the as1 leaf phenotype and reduces ectopic BP leaf expression. Taken together, our data suggest that BLH2/SAW1 and BLH4/SAW2 establish leaf shape by repressing growth in specific subdomains of the leaf at least in part by repressing expression of one or more of the KNOX genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.