Traditional accumulation-to-bound decision-making models assume that all choice options are processed with equal attention. In real life decisions, however, humans alternate their visual fixation between individual items to efficiently gather relevant information (Yang et al., 2016). These fixations also causally affect one's choices, biasing them toward the longer-fixated item (Krajbich et al., 2010). We derive a normative decision-making model in which attention enhances the reliability of information, consistent with neurophysiological findings (Cohen and Maunsell, 2009). Furthermore, our model actively controls fixation changes to optimize information gathering. We show that the optimal model reproduces fixation-related choice biases seen in humans and provides a Bayesian computational rationale for this phenomenon. This insight led to additional predictions that we could confirm in human data. Finally, by varying the relative cognitive advantage conferred by attention, we show that decision performance is benefited by a balanced spread of resources between the attended and unattended items.
Traditional accumulation-to-bound decision-making models assume that all choice options are processed simultaneously with equal attention. In real life decisions, however, humans tend to alternate their visual fixation between individual items in order to efficiently gather relevant information [46, 23, 21, 12, 15]. These fixations also causally affect one’s choices, biasing them toward the longer-fixated item [38, 2, 25]. We derive a normative decision-making model in which fixating a choice item boosts information about that item. In contrast to previous models [25, 39], we assume that attention enhances the reliability of information rather than its magnitude, consistent with neurophysiological findings [3, 13, 29, 45]. Furthermore, our model actively controls fixation changes to optimize information gathering. We show that the optimal model reproduces fixation patterns and fixation-related choice biases seen in human decision-makers, and provides a Bayesian computational rationale for the fixation bias. This insight led to additional behavioral predictions that we confirmed in human behavioral data. Finally, we explore the consequences of changing the relative allocation of cognitive resources to the attended versus the unattended item, and show that decision performance is benefited by a more balanced spread of cognitive resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.