By a near-ring we mean a right near-ring.J0r, the right Jacobson radical of type 0, was introduced for near-rings by the first and second authors. In this paper properties of the radicalJ0rare studied. It is shown thatJ0ris a Kurosh-Amitsur radical (KA-radical) in the variety of all near-ringsR, in which the constant partRcofRis an ideal ofR. So unlike the left Jacobson radicals of types 0 and 1 of near-rings,J0ris a KA-radical in the class of all zero-symmetric near-rings.J0ris nots-hereditary and hence not an ideal-hereditary radical in the class of all zero-symmetric near-rings.
Near-rings considered are right near-rings. Let ν ∈ {1, 2}. J r ν , the right Jacobson radical of type-ν, was introduced for near-rings by the first and second authors. In this paper properties of these radicals J r ν are studied. It is shown that J r ν is a Kurosh-Amitsur radical (KA-radical) in the variety of all near-rings R in which the constant part Rc of R is an ideal of R. Thus, unlike the left Jacobson radical of type-1 of near-rings, J r 1 is a KA-radical in the class of all zero-symmetric near-rings. J r ν is not s-hereditary and hence not an ideal-hereditary radical in the class of all zero-symmetric near-rings.
Mathematics Subject Classification (2000). Primary 16Y30.Keywords. Right R-groups of type-1 and 2, right primitive ideals of type-1 and 2, right Jacobson radicals of type-1 and 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.