Abstract-We study the problem of optimal estimation using quantized innovations, with application to distributed estimation over sensor networks. We show that the state probability density conditioned on the quantized innovations can be expressed as the sum of a Gaussian random vector and a certain truncated Gaussian vector. This structure bears close resemblance to the full information Kalman filter and so allows us to effectively combine the Kalman structure with a particle filter to recursively compute the state estimate. We call the resuting filter the Kalman like particle filter (KLPF) and observe that it delivers close to optimal performance using far fewer particles than that of a particle filter directly applied to the original problem. We also note that the conditional state density follows a, so called, generalized closed skew-normal (GCSN) distribution.
Autonomous vehicles rely on precise high definition (HD) 3d maps for navigation. This paper presents the mapping component of an end-to-end system for crowdsourcing precise 3d maps with semantically meaningful landmarks such as traffic signs (6 dof pose, shape and size) and traffic lanes (3d splines). The system uses consumer grade parts, and in particular, relies on a single front facing camera and a consumer grade GPS. Using real-time sign and lane triangulation ondevice in the vehicle, with offline sign/lane clustering across multiple journeys and offline Bundle Adjustment across multiple journeys in the backend, we construct maps with mean absolute accuracy at sign corners of less than 20 cm from 25 journeys. To the best of our knowledge, this is the first end-to-end HD mapping pipeline in global coordinates in the automotive context using cost effective sensors.
Abstract-We study the problem of optimal estimation using quantized innovations, with application to distributed estimation over sensor networks. We show that the state probability density conditioned on the quantized innovations can be expressed as the sum of a Gaussian random vector and a certain truncated Gaussian vector. This structure bears close resemblance to the full information Kalman filter and so allows us to effectively combine the Kalman structure with a particle filter to recursively compute the state estimate. We call the resuting filter the Kalman like particle filter (KLPF) and observe that it delivers close to optimal performance using far fewer particles than that of a particle filter directly applied to the original problem. We also note that the conditional state density follows a, so called, generalized closed skew-normal (GCSN) distribution.
We consider rate R = k n causal linear codes that map a sequence of k-dimensional binary vectors {b t } ∞ t=0 to a sequence of n-dimensional binary vectors {c t } ∞ t=0 , such that each c t is a function of {b τ } t τ =0 . Such a code is called anytime reliable, for a particular binary-input memoryless channel, if at each time instant t, and for all delays d ≥ d o , the probability of error−βnd , for some β > 0. Anytime reliable codes are useful in interactive communication problems and, in particular, can be used to stabilize unstable plants across noisy channels.Schulman proved the existence of such codes which, due to their structure, he called tree codes in [1];however, to date, no explicit constructions and tractable decoding algorithms have been devised. In this paper, we show the existence of anytime reliable "linear" codes with "high probability", i.e., suitably chosen random linear causal codes are anytime reliable with high probability. The key is to consider time-invariant codes (i.e., ones with Toeplitz generator and parity check matrices) which obviates the need to union bound over all times. For the binary erasure channel we give a simple ML decoding algorithm whose average complexity is constant per time iteration and for which the probability that complexity at a given time t exceeds KC 3 decays exponentially in C. We show the efficacy of the method by simulating the stabilization of an unstable plant across a BEC, and remark on the tradeoffs between the utilization of the communication resources and the control performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.