Broadcast scheduling is a fundamental problem in wireless ad hoc networks. The objective of a broadcast schedule is to deliver a message from a given source to all other nodes in a minimum amount of time. At the same time, in order for the broadcast to proceed as predicted in the schedule, it must not contain parallel transmissions which can be conflicting based on the collision and interference parameters in the wireless network. Most existing work on this problem use a limited network model which accounts only for conflicts occurring inside the transmission ranges of the nodes. The broadcast schedules produced by these algorithms are likely to experience unpredictable delays when deployed in the network. This is because they do not take into consideration other important sources of conflict in parallel transmissions, namely the interference range and the carrier sensing range. In this paper we develop a conflict-aware network model, which uses these parameters to increase the probability of scheduling conflict-free transmissions, and thereby improve the reliability of the broadcast schedule. We present and prove correctness of a constant approximation algorithm for minimum-latency broadcast scheduling under this network model. We also present a greedy heuristic algorithm for the same problem. Experimental results are provided to evaluate the performance of our algorithms. In addition, the algorithms are analyzed to justify their performance trends.
M any skin diseases are based in the dermal layer of the skin like-acne, alopecia, psoriasis, herpes zoster, etc. Conventional topical formulations have not proved to be effective in managing these conditions because of poor retention in the skin. Some formulations do not penetrate through the stratum corneum and some pass through the skin very quickly. Therefore, there is need to develop a strategy to deliver drugs to the dermis for better management of these conditions. Vesicular systems like liposomes, niosomes, ethosomes and transfersomes have been used by many researchers to localize drugs in the dermal layer and have been fairly successful. Some vesicles were found to be more effective in retaining drug to the skin and some were more effective in transdermal delivery. This article summarizes and compares the work done in the last decade on this topic and provides a conclusion.
There is apprehension about widespread use of electrical and electromagnetic gadgets which are supposed to emit electromagnetic radiations. Reports are controversy. These electromagnetic fields (EMFs) have considerable effect on endocrine system of exposed subjects. This study was focused to assess the possible bioeffects of extremely low-frequency (ELF)-EMFs on epinephrine level, DNA damage and oxidative stress in subjects occupationally exposed to 132 kV high-voltage substations. The blood sample of 142 exposed subjects and 151 non-exposed individuals was analyzed. Plasma epinephrine was measured by enzyme-linked immunosorbent assay, DNA damage was studied by alkaline comet assay along with oxidative stress. Epinephrine levels of sub-groups showed mean concentration of 75.22 ± 1.46, 64.43 ± 8.26 and 48.47 ± 4.97 for high, medium and low exposed groups, respectively. DNA damage ranged between 1.69 µm and 9.91 µm. The oxidative stress levels showed significant increase. The individuals employed in the live-line procedures were found to be vulnerable for EM stress with altered epinephrine concentrations, DNA damage and increased oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.