Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators1, which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis2, but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings3, and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.
Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered micropropagation of elite hybrids and genetically modified crops, but the mechanism remains a mystery1. The oil palm fruit abnormality, mantled, is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production2–4. Widely regarded as epigenetic5, mantling has defied explanation, but here we identify the MANTLED gene using Epigenome Wide Association Studies. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (the Good Karma epiallele) predicts normal fruit set, while hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and dramatic loss of yield. Loss of Karma methylation and small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.
A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6.
Waste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products annually. This aqueous stream is rich in phenolic antioxidants, which were investigated for their composition and potential in vitro biological activity. We have identified three isomers of caffeoylshikimic acid as major components of oil palm phenolics (OPP). The 2,2-diphenyl-1-picrylhydrazyl assay confirmed potent free radical scavenging activity. To test for possible cardioprotective effects of OPP, we carried out in vitro LDL oxidation studies as well as ex vivo aortic ring and mesenteric vascular bed relaxation measurements. We found that OPP inhibited the Cu-mediated oxidation of human LDL. OPP also promoted vascular relaxation in both isolated aortic rings and perfused mesenteric vascular beds pre-contracted with noradrenaline. To rule out developmental toxicity, we performed teratological studies on rats up to the third generation and did not find any congenital anomalies. Thus, these initial studies suggest that OPP is safe and may have a protective role against free radical damage, LDL oxidation and its attendant negative effects, as well as vascular constriction in mitigating atherosclerosis. Oil palm vegetation liquor thus represents a new source of phenolic bioactives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.