Tregs not only keep immune responses to autoantigens in check, but also restrain those directed toward pathogens and the commensal microbiota. Control of peripheral immune homeostasis by Tregs relies on their capacity to accumulate at inflamed sites and appropriately adapt to their local environment. To date, the factors involved in the control of these aspects of Treg physiology remain poorly understood. Here, we show that the canonical Th2 transcription factor GATA3 is selectively expressed in Tregs residing in barrier sites including the gastrointestinal tract and the skin. GATA3 expression in both murine and human Tregs was induced upon TCR and IL-2 stimulation. Although GATA3 was not required to sustain Treg homeostasis and function at steady state, GATA3 played a cardinal role in Treg physiology during inflammation. Indeed, the intrinsic expression of GATA3 by Tregs was required for their ability to accumulate at inflamed sites and to maintain high levels of Foxp3 expression in various polarized or inflammatory settings. Furthermore, our data indicate that GATA3 limits Treg polarization toward an effector T cell phenotype and acquisition of effector cytokines in inflamed tissues. Overall, our work reveals what we believe to be a new facet in the complex role of GATA3 in T cells and highlights what may be a fundamental role in controlling Treg physiology during inflammation.
Specification of the T helper 17 (Th17) cell lineage requires a well defined set of transcription factors, but how these integrate with post-transcriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient-Th17 and -T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9 and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2.
The major goal of this study was to perform an in depth characterization of the “gene signature” of human FoxP3+ T regulatory cells (Tregs). Highly purified Tregs and T conventional cells (Tconvs) from multiple healthy donors (HD), either freshly explanted or activated in vitro, were analyzed via RNA sequencing (RNA-seq) and gene expression changes validated using the nCounter system. Additionally, we analyzed microRNA (miRNA) expression using TaqMan low-density arrays. Our results confirm previous studies demonstrating selective gene expression of FoxP3, IKZF2, and CTLA4 in Tregs. Notably, a number of yet uncharacterized genes (RTKN2, LAYN, UTS2, CSF2RB, TRIB1, F5, CECAM4, CD70, ENC1 and NKG7) were identified and validated as being differentially expressed in human Tregs. We further characterize the functional roles of RTKN2 and LAYN by analyzing their roles in vitro human Treg suppression assays by knocking them down in Tregs and overexpressing them in Tconvs. In order to facilitate a better understanding of the human Treg gene expression signature, we have generated from our results a hypothetical interactome of genes and miRNAs in Tregs and Tconvs,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.