second model, the two main conditions were parametrically modulated by the two categories, respectively (SOM, S5.1). The activation of the precuneus was higher for hard dominance-solvable games than for easy ones ( Fig. 4A and table S10). The activation of the insula was higher for the highly focal coordination games than for less focal ones ( Fig. 4B and table S11). Previous studies also found that precuneus activity increased when the number of planned moves increased (40, 41). The higher demand for memory-related imagery and memory retrieval may explain the greater precuneus activation in hard dominance-solvable games. In highly focal coordination games, the participants may have felt quite strongly that the pool students must notice the same salient feature. This may explain why insula activation correlates with NCI.Participants might have disagreed about which games were difficult. We built a third model to investigate whether the frontoparietal activation correlates with how hard a dominance-solvable game is and whether the activation in insula and ACC correlates with how easy a coordination game is. Here, the two main conditions were parametrically modulated by each participant's probability of obtaining a reward in each game (SOM, S2.2 and S5.2). We found a negative correlation between the activation of the precuneus and the participant's probability of obtaining a reward in dominance-solvable games ( Fig. 4C and table S12), which suggests that dominance-solvable games that yielded lower payoffs presented harder mental challenges. In a previous study on working memory, precuneus activity positively correlated with response times, a measure of mental effort (24). Both findings are consistent with the interpretation that subjective measures reflecting harder tasks (higher efforts) correlate with activation in precuneus. A positive correlation between insula activation and the participant's probability of obtaining a reward again suggests that coordination games with a highly salient feature strongly activated the "gut feeling" reported by many participants (Fig. 4D and table S13). A previous study found that the subjective rating of "chills intensity" in music correlates with activation of insula (42). Both findings are consistent with the interpretation that the subjective intensity of how salient a stimulus is correlates with activation in insula.As mentioned, choices were made significantly faster in coordination games than in dominancesolvable games. The results of the second and third models provide additional support for the idea that intuitive and deliberative mental processes have quite different properties. The "slow and effortful" process was more heavily taxed when the dominance-solvable games were harder. The "fast and effortless" process was more strongly activated when coordination was easy.
The persistence of large blocks of homologous synteny and a high frequency of breakpoint reuse are distinctive features of mammalian chromosomes that are not well understood in evolutionary terms. To gain a better understanding of the evolutionary forces that affect genome architecture, synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and chicken) were compared at <1 human-Mbp resolution. Homologous synteny blocks (HSBs; N = 2233) and chromosome evolutionary breakpoint regions (EBRs; N = 1064) were identified from pairwise comparisons of all genomes. Analysis of the size distribution of HSBs shared in all 10 species' chromosomes (msHSBs) identified three (>20 Mbp) that are larger than expected by chance. Gene network analysis of msHSBs >3 human-Mbp and EBRs <1 Mbp demonstrated that msHSBs are significantly enriched for genes involved in development of the central nervous and other organ systems, whereas EBRs are enriched for genes associated with adaptive functions. In addition, we found EBRs are significantly enriched for structural variations (segmental duplications, copy number variants, and indels), retrotransposed and zinc finger genes, and single nucleotide polymorphisms. These results demonstrate that chromosome breakage in evolution is nonrandom and that HSBs and EBRs are evolving in distinctly different ways. We suggest that natural selection acts on the genome to maintain combinations of genes and their regulatory elements that are essential to fundamental processes of amniote development and biological organization. Furthermore, EBRs may be used extensively to generate new genetic variation and novel combinations of genes and regulatory elements that contribute to adaptive phenotypes.
Background: The recent availability of genomic sequences and BAC libraries for a large number of mammals provides an excellent opportunity for identifying comparatively-anchored markers that are useful for creating high-resolution radiation-hybrid (RH) and BAC-based comparative maps. To use these maps for multispecies genome comparison and evolutionary inference, robust bioinformatic tools are required for the identification of chromosomal regions shared between genomes and to localize the positions of evolutionary breakpoints that are the signatures of chromosomal rearrangements. Here we report an automated tool for the identification of homologous synteny blocks (HSBs) between genomes that tolerates errors common in RH comparative maps and can be used for automated whole-genome analysis of chromosome rearrangements that occur during evolution.
Multisite haplotype on cattle chromosome 3 is associated with quantitative trait locus effects on lactation traits. Physiol Genomics 43: 1185-1197, 2011. First published September 6, 2011 doi:10.1152/physiolgenomics.00253.2010.-The goal of this study was to identify candidate genes and DNA polymorphisms for quantitative trait loci (QTL) affecting milk yield (MY), fat yield (FY), and protein yield (PY) previously mapped to bovine chromosome 3 (BTA3). To accomplish this, 373 half-siblings sired by three bulls previously shown to be segregating for lactation trait QTL, and 263 additional sires in the U.S. Dairy Bull DNA Repository (DBDR) were genotyped for 2,500 SNPs within a 16.3 Mbp QTL critical region on BTA3. Targeted resequencing of ϳ1.8 Mbp within the QTL critical region of one of the QTL heterozygous sires identified additional polymorphisms useful for association studies. Twentythree single nucleotide polymorphisms (SNPs) within a fine-mapped region were associated with effects on breeding values for MY, FY, or PY in DBDR sires, of which five SNPs were in strong linkage disequilibrium in the population. This multisite haplotype included SNPs located within exons or promoters of four tightly linked genes: RAP1A, ADORA3, OVGP1, and C3H1orf88. An SNP within RAP1A showed strong evidence of a recent selective sweep based on integrated haplotype score and was also associated with breeding value for PY. Because of its known function in alveolar lumen formation in the mammary gland, RAP1A is thus a strong candidate gene for QTL effects on lactation traits. Our results provide a detailed assessment of a QTL region that will be a useful guide for complex traits analysis in humans and other noninbred species.genes; single nucleotide polymorphisms; RAP1A; milk ONE OF THE GRAND CHALLENGES in modern genetics is to identify the molecular genetic basis for complex traits (20). In cattle, the low-to-moderate heritability of quantitative traits under selection and limited sizes of resource populations are largely responsible for mapping most quantitative trait loci (QTL) to large intervals of Ͼ10 cM (http://www.genome.iastate.edu/ cgi-bin/QTLdb/BT/index). The poor genomic resolution of mapped cattle QTL makes identification of the genes and polymorphisms underlying their effects a difficult and expensive endeavor. Despite these limitations, two QTL with large effects on milk, milk fat, and protein yields were resolved at the gene level with high probability (12, 23), thereby demonstrating the strength of available cattle resource populations and genomic tools for complex traits analysis. These findings have been rapidly implemented by the dairy industry for genetic improvement in milk production traits (24). Moreover, these studies have illuminated our general understanding of the genetic control of complex traits and have provided two new model systems for lactation biology. Therefore, genetic dissection of QTL affecting lactation traits is important both as a biomedical model system and for applications in animal breeding...
The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa) program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.