Ion channels represent highly attractive targets for drug discovery and are implicated in a diverse range of disorders, in particular in the central nervous and cardiovascular systems. Moreover, assessment of cardiac ion-channel activity of new chemical entities is now an integral component of drug discovery programmes to assess potential for cardiovascular side effects. Despite their attractiveness as drug discovery targets ion channels remain an under-exploited target class, which is in large part due to the labour-intensive and low-throughput nature of patch-clamp electrophysiology. This Review provides an update on the current state-of-the-art for the various automated electrophysiology platforms that are now available and critically evaluates their impact in terms of ion-channel screening, lead optimization and the assessment of cardiac ion-channel safety liability.
For every movement, heartbeat and thought, ion channels need to open and close. It is therefore not surprising that their malfunctioning leads to serious diseases. Currently, only approximately 10% of drugs, with a market value in excess of US$10 billion, act on ion channels. The systematic exploitation of this target class has started, enabled by novel assay technologies and fundamental advances of the structural and mechanistic understanding of channel function. The latter, which was rewarded with the Nobel Prize in 2003, has opened up an avenue for rational drug design. In this review we provide an overview of the current repertoire of screening technologies that has evolved to drive ion channel-targeted drug discovery towards new medicines of the future.
Ion channels are attractive targets for drug discovery with recent estimates indicating that voltage and ligand-gated channels account for the third and fourth largest gene families represented in company portfolios after the G protein coupled and nuclear hormone receptor families. A historical limitation on ion channel targeted drug discovery in the form of the extremely low throughput nature of the gold standard assay for assessing functional activity, patch clamp electrophysiology in mammalian cells, has been overcome by the implementation of multi-well plate format cell-based screening strategies for ion channels. These have taken advantage of various approaches to monitor ion flux or membrane potential using radioactive, non-radioactive, spectroscopic and fluorescence measurements and have significantly impacted both high-throughput screening and lead optimization efforts. In addition, major advances have been made in the development of automated electrophysiological platforms to increase capacity for cell-based screening using formats aimed at recapitulating the gold standard assay. This review addresses the options available for cell-based screening of ion channels with examples of their utility and presents case studies on the successful implementation of high-throughput screening campaigns for a ligand-gated ion channel using a fluorescent calcium indicator, and a voltage-gated ion channel using a fluorescent membrane potential sensitive dye.
The 5-hydroxytryptamine 2C (5-HT(2C)) receptor is a member of the serotonin 5-HT(2) subfamily of G-protein-coupled receptors signaling predominantly via the phospholipase C (PLC) pathway. Stimulation of phosphoinositide (PI) hydrolysis upon 5-HT(2C) receptor activation is traditionally assessed by measuring inositol monophosphate (IP(1)) using time-consuming and labor-intensive anion exchange radioactive assays. In this study, we have developed and optimized a cellular IP(1) assay using homogeneous time-resolved fluorescence (HTRF), a fluorescence resonance energy transfer (FRET)-based technology (Cisbio; Gif sur Yvette, France). The measurement is simple to carry out without the cumbersome steps associated with radioactive assays and may therefore be used as an alternative tool to evaluate PI hydrolysis activated by 5-HT(2C) agonists. In Chinese hamster ovary (CHO) cells stably expressing 5-HT(2C) receptors, characterization of 5-HT(2C) agonists with the HTRF platform revealed a rank order of potency (EC(50), nM) comparable to that from intracellular calcium mobilization studies measured by the fluorometric imaging plate reader (FLIPR). A similar rank order of potency was seen with conventional radioactive PI assay with the exception of 5-HT. Lastly, the new assay data correlated better with agonist-induced calcium responses in FLIPR (R(2) = 0.78) than with values determined by radioactive IP(1) method (R(2) = 0.64). Our study shows that the HTRF FRET-based assay detects IP(1) with good sensitivity and may be streamlined for high-throughput (HTS) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.