Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
The arteriovenous (AV) loop model is a key technique to solve one of the major problems of tissue engineering-providing adequate vascular support for a tissue construct of significant size. However, the molecular and cellular mechanisms of vascularization and factors influencing the generation of new tissue in the AV loop are still poorly understood. We previously established a novel intravital microscopy approach to study these events. In this study, we implanted our observation chamber filled with two types of hydrogels such as fibrin and methacrylate gelatin (GelMA) and performed intravital microscopy (IVM) on days 7, 14, and 21. Initial microvessel formation was observed in GelMA on day 14, while the vessel network showed clear indicators of network rearrangement and maturation on day 21. No visible microvessels were observed in fibrin. The chambers were explanted on day 21.Histological examination revealed higher numbers of microvessels in GelMA compared to fibrin, while the AV loop was thrombosed in all fibrin constructs, possibly due to matrix degradation. GelMA proved to be an ideal matrix for IVM studies in the AV loop model due to its slow degradation and transparency. This IVM model can be employed as a novel tool for live and thus faster comprehension of crucial events in the tissue regeneration process, which can improve tissue engineering application.
Fibroblast growth factor-23 (FGF23), a bone-produced hormone, plays a critical role in mineral homeostasis. Human diseases associated with excessive intact circulating FGF23 (iFGF23) result in hypophosphatemia and low vitamin D hormone in patients with normal kidney function. In addition, there is accumulating evidence linking FGF23 with inflammation. Based on these studies and the frequent observation of hypophosphatemia among septic patients, we sought to elucidate further the relationship between FGF23 and mineral homeostasis in a clinically relevant murine polymicrobial sepsis model. Medium-severity sepsis was induced by cecum ligation puncture (CLP) in adult CD-1 mice of both sexes. Healthy CD-1 mice (without CLP) were used as controls. Forty-eight hours post-CLP, spontaneous urine was collected, and serum, organs and bones were sampled at necropsy. Serum iFGF23 increased ~20-fold in CLP compared to control mice. FGF23 protein concentration was increased in the bones, but not in spleen or liver of CLP mice. Despite the ~20-fold iFGF23 increase, we did not observe any significant changes in mineral homeostasis or parathyroid hormone levels in the blood of CLP animals. Urinary excretion of phosphate, calcium, and sodium remained unchanged in male CLP mice, whereas female CLP mice exhibited lower urinary calcium excretion, relative to healthy controls. In line with renal FGF23 resistance, expression of phosphate-, calcium- and sodium-transporting proteins did not show consistent changes in the kidneys of male and female CLP mice. Renal expression of the co-receptor αKlotho was downregulated in female, but not in male CLP mice. In conclusion, our data demonstrate that the dramatic, sex-independent rise in serum iFGF23 post-CLP was mainly caused by an upregulation of FGF23 secretion in the bone. Surprisingly, the upsurge in circulating iFGF23 did not alter humoral mineral homeostasis in the acutely septic mice. Hence, the biological function of elevated FGF23 in sepsis remains unclear and warrants further studies.
Objective Transplantation of prefabricated tissue‐engineered flaps can be a potential alternative for healing large tissue defects. Providing adequate vascular supply for an engineered tissue construct is one of the key points in establishing successful tissue engineering‐based treatment approaches. In tissue engineering‐based vascularization techniques like the arteriovenous loop, vascular grafts with high angiogenic potential can help to enhance neovascularization and tissue formation. Therefore, our study aimed to compare the angiogenic potential of vascular grafts from different locations in the rat. Methods The angiogenic activity was investigated by an ex vivo vessel outgrowth ring assay using 1‐mm height vascular segments embedded in fibrin for 2 weeks. Results Maximum vessel outgrowth was observed on Days 10–12. Upper extremity vessels exhibited stronger outgrowth than lower extremity vessels. Moreover, arterial vessels demonstrated higher angiogenic potential compared with venous vessels. Conclusion Collectively, our ex vivo findings suggest that upper extremity arterial vessels have a higher angiogenic capacity, which could be used to improve neovascularization and tissue formation in tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.