Malus domestica (Apple) is one of the most widely cultivated cash crops of Nepal. Jumla and Mustang are two major pocket areas for the production of apple. Flavonoids including quercetin and rutin are potent antioxidants present in apples. This study was designed to quantify and compare the presence of quercetin and rutin in different plant parts (peel, leaf, and bark) among various cultivars of Malus domestica from two pocket zones of Nepal. A new HPLC-UV method was developed and validated for the quantification of quercetin and rutin. Polyphenols, flavonoids, and carbohydrate contents were determined by colorimetric methods. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay was carried out to measure in vitro antioxidative activity. Acid hydrolysis of each extract was carried out by the standard method to measure aglycone quercetin content after hydrolysis of its glycosides. The total rutin content ranged from 3.69 ± 1.34 to 374.50 ± 2.35 mg/100g dry extract weight. Before the acidic hydrolysis, the total quercetin content ranged from 2.96 ± 0.13 to 171.05 ± 0.95 mg/100g dry extract weight whereas its amount increased highly after the hydrolysis and it ranged from 80.84 ± 19.65 to 7445.32 ± 29.25 mg/100g dry extract weight. Total polyphenol content ranged from 19.48 ± 0.23 to 123.48 ± 1.84 µg gallic acid equivalent/mg of dry extract weight. Similarly, flavonoid content ranged from 2.21 ± 0.72 µg to 755.54 ± 1.91 µg quercetin equivalent/mg of dry extract weight. Total carbohydrate content ranged from 144.15 ± 3.73 to 484.65 ± 2.63 µg glucose equivalent per 0.5 mg dry extract weight. All the extracts showed the various degrees of antioxidant activity in a dose-dependent manner. Among them, stem bark of the Jonathan Jumla showed potent antioxidant activity with IC50 value of 13.003 µg/mL. The present study provides the information about variation of the phytochemical content among the different cultivars, parts, and geographic locations. Furthermore, it revealed that bark of Malus domestica cultivars had high quercetin and rutin content with high antioxidant activity.
The fat obtained from the ripened seeds of Diploknema butyracea is widely used as a vegetable oil in rural areas of Nepal. This study was aimed for the physicochemical evaluation (acid value, iodine value, saponification value, peroxide value, ester value, pH, and liquefaction point) of the Diploknema butyracea seed extract (chyuri fat) and the formulation of 2% w/w ketoconazole ointment by using it as a base. All the physicochemical parameters were determined quantitatively by using the method of Indian Pharmacopoeia (IP), volume-I. By fusion method, 3 different formulations F-A, F-B, and F-C were prepared, in which different proportions of chyuri fat, polyethylene glycol 6000 (PEG 600), Tween 80, and propylene glycol were used as an ointment base. Various quality parameters such as spreadability, extrudability, viscosity, smoothness, pH, average fill weight, assay, content uniformity, accelerated stability, and drug release profiles were determined. HPLC was used for the determination of ketoconazole content in the ointment formulations. Physicochemical evaluation of the chyuri fat ensured its suitability for industrial purpose. The active ingredient release profile of formulations F-A (87.71%), F-B (88.89%), and F-C (91.09%) after 5 hours were within acceptable range along with other parameters. Assay of the formulations F-A, F-B, and F-C were reported to be 103.01, 107.9, and 102.45%, respectively. Overall, evaluation of the formulation F-A, prepared by using chyrui fat only, gave satisfactory results and most of the parameters were statistically similar ( p > 0.05 ) to the F-B and F-C formulated by incorporating a certain proportion of synthetic base. Thus it can be concluded that chyuri fat can be the best alternative to replace the expensive synthetic base.
Objective: The systematic study of effective alternative anti-diabetic drugs has great importance to manage diabetes as well as other oxidative stress-related diseases. According to previous research, root and bark of Mussaenda macrophylla plant has anti-microbial, anti-coagulant, anti-inflammatory, and hepatoprotective activity. Ethnomedicinal data shows that Mussaenda macrophylla is used to treat diabetes as well as oxidative stress. The objective of this research is to investigate in vitro anti-diabetic and anti-oxidant activity of root extract of Mussaenda macrophylla. Methods: DPPH free radical scavenging assay was used to detect anti-oxidant potency of ethanol and methanol root extract of the plant and expressed as % of radicle inhibition. Anti-diabetic activity was determined by the glucose diffusion method using a glucose oxidase kit and results were expressed as mean±SD. Results: The ethanol root extract at the concentration of 50 mg/ml and 100 mg/ml showed better glucose diffusion inhibition than that of methanol extract at the same concentration on increasing time interval. Ethanol extract at the concentration 100 µg/ml displayed better DPPH scavenging activity (89.83±0.19 %) than that of methanol extract (86.61±0.75%). Conclusion: This study concluded that ethanol and methanol root extract of Mussenda macrophylla have potent anti-diabetic as well as anti-oxidant activity but further advance research is necessary in the animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.