Membrane proteins play key roles in the development and progression of cancer. We have studied differentially expressed membrane proteins in glioblastoma multiforme (GBM), the most common and aggressive type of primary brain tumor, by high resolution LC-MS/MS mass spectrometry and quantitation by iTRAQ. A total of 1834 membrane proteins were identified with high confidence, of which 356 proteins were found to be altered by 2-fold change or more (198 up-and 158 down-regulated); 56% of them are known membrane proteins associated with major cellular processes. Mass spectrometry results were confirmed for representative proteins on individual specimens by immunohistochemistry. On mapping of the differentially expressed proteins to cellular pathways and functional networks, we notably observed many calciumbinding proteins to be altered, implicating deregulation of calcium signaling and homeostasis in GBM, a pathway also found to be enriched in the report (
Glioblastomas (GBMs) are the most common and lethal primary tumors of the central nervous system with high level of recurrence despite aggressive therapy. Tumor-associated proteins/peptides may appear in the plasma of these patients as a result of disruption of the blood-brain barrier in them, raising the scope for development of plasma-based tests for diagnosis and monitoring the disease. With this objective, we analyzed the levels of proteins present in the plasma from GBM patients using an iTRAQ based LC-MS/MS approach. Analysis with pooled plasma specimens from the patient and healthy control samples revealed high confidence identification of 296 proteins, of which 61 exhibited a fold-change ≥1.5 in the patient group. Forty-eight of them contained signal sequence. A majority have been reported in the differentially expressed transcript or protein profile of GBM tissues; 6 have been previously studied as plasma biomarkers for GBM and 16 for other types of cancers. Altered levels of three representative proteins–ferritin light chain (FTL), S100A9, and carnosinase 1 (CNDP1)–were verified by ELISA in a test set of ten individual plasma specimens. FTL is an inflammation marker also implicated in cancer, S100A9 is an important member of the Ca2+ signaling cascade reported to be altered in GBM tissue, and CNDP1 has been reported for its role in the regulation of the levels of carnosine, implicated as a potential drug for GBM. These and other proteins in the dataset may form useful starting points for further clinical investigations for the development of plasma-based biomarker panels for GBM.
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal forms of the primary brain tumors. With predominance of tumor heterogeneity and emergence of new subtypes, new approaches are needed to develop tissue-based markers for tumor typing or circulatory markers to serve as blood-based assays. Multi-omics data integration for GBM tissues would offer new insights on the molecular view of GBM pathogenesis useful to identify biomarker panels. On the other hand, mapping differentially expressed tissue proteins for their secretory potential through bioinformatics analysis or analysis of the tumor cell secretome or tumor exosomes would enhance our understanding of the tumor microenvironment and prospects for targeting circulatory biomarkers. In this review, the authors first present potential biomarker candidates for GBM that have been reported and then focus on plausible pipelines for multi-omic data integration to identify additional, high-confidence molecular panels for clinical applications in GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.