LFA-1 (leukocyte function-associated antigen-1), is a member of the beta2-integrin family and is expressed on all leukocytes. This letter describes the discovery and preliminary SAR of spirocyclic hydantoin based LFA-1 antagonists that culminated in the identification of analog 8 as a clinical candidate. We also report the first example of the efficacy of a small molecule LFA-1 antagonist in combination with CTLA-4Ig in an animal model of transplant rejection.
Molecular interactions and orientations responsible for differences in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer partitioning of three structurally related drug-like molecules (4-ethylphenol, phenethylamine, and tyramine) were investigated. This work is based on previously reported molecular dynamics (MD) simulations that determined their transverse free energy profiles across the bilayer. Previously, the location where the transfer free energy of the three solutes is highest, which defines the barrier domain for permeability, was found to be the bilayer center, while the interfacial region was found to be the preferred binding region. Contributions of the amino (NH2) and hydroxyl (OH) functional groups to the transfer free energies from water to the interfacial region were found to be very small both experimentally and by MD simulation, suggesting that the interfacial binding of these solutes is hydrophobically driven and occurs with minimal loss of hydrogen-bonding interactions of the polar functional groups which can occur with either water or phospholipid head groups. Therefore, interfacial binding is relatively insensitive to the number or type of polar functional groups on the solute. In contrast, the relative solute free energy in the barrier domain is highly sensitive to the number of polar functional groups on the molecule. The number and types of hydrogen bonds formed between the three solutes and polar phospholipid atoms or with water molecules were determined as a function of solute position in the bilayer. Minima were observed in the number of hydrogen bonds formed by each solute at the center of the bilayer, coinciding with a decrease in the number of water molecules in DOPC as a function of distance away from the interfacial region. In all regions, hydrogen bonds with water molecules account for the majority of hydrogen-bonding interactions observed for each solute. Significant orientational preferences for the solutes are evident in certain regions of the bilayer (e.g., within the ordered chain region and near the interfacial region 20-25 Å from the bilayer center). The preferred orientations are those that preserve favorable molecular interactions for each solute, which vary with the solute structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.