Recent hardware trends with GPUs and the increasing vector lengths of SSE-like ISA extensions for multicore CPUs imply that effective exploitation of SIMD parallelism is critical for achieving high performance on emerging and future architectures. A vast majority of existing applications were developed without any attention by their developers towards effective vectorizability of the codes. While developers of production compilers such as GNU gcc, Intel icc, PGI pgcc, and IBM xlc have invested considerable effort and made significant advances in enhancing automatic vectorization capabilities, these compilers still cannot effectively vectorize many existing scientific and engineering codes. It is therefore of considerable interest to analyze existing applications to assess the inherent latent potential for SIMD parallelism, exploitable through further compiler advances and/or via manual code changes. In this paper we develop an approach to infer a program's SIMD parallelization potential by analyzing the dynamic data-dependence graph derived from a sequential execution trace. By considering only the observed run-time data dependences for the trace, and by relaxing the execution order of operations to allow any dependence-preserving reordering, we can detect potential SIMD parallelism that may otherwise be missed by more conservative compile-time analyses. We show that for several benchmarks our tool discovers regions of code within computationally-intensive loops that exhibit high potential for SIMD parallelism but are not vectorized by state-of-the-art compilers. We present several case studies of the use of the tool, both in identifying opportunities to enhance the transformation capabilities of vectorizing compilers, as well as in pointing to code regions to manually modify in order to enable auto-vectorization and performance improvement by existing compilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.