Seminal microbiological work of environmental nontuberculous mycobacteria (NTM) includes the discovery that NTM inhabit water distribution systems and soil, and that the species of NTM found are geographically diverse. It is likely that patients acquire their infections from repeated exposures to their environments, based on the well-accepted paradigm that water and soil bioaerosols – enriched for NTM – can be inhaled into the lungs. Support comes from reports demonstrating NTM isolated from the lungs of patients are genetically identical to NTM found in their environment. Well documented sources of NTM include peat-rich soils, natural waters, drinking water, hot water heaters, refrigerator taps, catheters, and environmental amoeba. However, NTM have also been recovered in biofilms from ice machines, heated nebulizers, and heater-cooler units, as well as seat dust from theaters, vacuum cleaners, and cobwebs. New studies on the horizon aim to significantly expand the current knowledge of environmental NTM niches in order to improve our current understanding of the specific ecological factors driving the emergence of NTM lung disease. Specifically, the Hawaiian Island environment is currently being studied as a model to identify other point sources of exposure as it is the U.S. state with the highest number of NTM lung disease cases. Because of its geographic isolation and unique ecosystem, the Hawaiian environment is being probed for correlative factors that may promote environmental NTM colonization.
Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic pulmonary disease with species diversity showing significant regional variation. In the United States, Hawai’i shows the highest rate of NTM pulmonary disease. The need for improved understanding of NTM reservoirs led us to identify NTM from patient respiratory specimens and compare NTM diversity between outdoor and indoor locations in Hawai’i. A total of 545 water biofilm samples were collected from 357 unique locations across Kaua’i (n = 51), O’ahu (n = 202), Maui (n = 159), and Hawai’i Island (n = 133) and divided into outdoor (n = 179) or indoor (n = 366) categories. rpoB sequence analysis was used to determine NTM species and predictive modeling applied to develop NTM risk maps based on geographic characteristics between environments. M. chimaera was frequently identified from respiratory and environmental samples followed by M. chelonae and M. abscessus; yet significantly less NTM were consistently recovered from outdoor compared to indoor biofilms, as exemplified by showerhead biofilm samples. While the frequency of M. chimaera recovery was comparable between outdoor and indoor showerhead biofilms, phylogenetic analyses demonstrate similar rpoB gene sequences between all showerhead and respiratory M. chimaera isolates, supporting outdoor and indoor environments as possible sources for pulmonary M. chimaera infections.
Environmental nontuberculous mycobacteria (NTM) with the potential to cause opportunistic lung infections can reside in soil. This might be particularly relevant in Hawai'i, a geographic hot spot for NTM infections and whose soil composition differs from many other areas of the world. Soil components are likely to contribute to NTM prevalence in certain niches, as food sources or attachment scaffolds, but the particular types of soils, clays, and minerals that impact NTM growth are not well-defined. Hawai'i soil and chemically weathered rock (a.k.a., saprolite) samples were examined to characterize the microbiome and quantify 11 mineralogical features as well as soil pH. Machine learning methods were applied to identify important soil features influencing the presence of NTM. Next, these features were directly tested in vitro by incubating synthetic clays and minerals in the presence of Mycobacteroides abscessus and Mycobacterium chimaera isolates recovered from the Hawai'i environment and changes in bacterial growth were determined. Of the components examined, synthetic gibbsite, a mineral form of aluminum hydroxide, inhibited the growth of both M. abscessus and M. chimaera, while other minerals tested showed differential effects on each species. For example, M. abscessus (but not M. chimaera) growth was significantly higher in the presence of hematite, an iron oxide mineral. In contrast, M. chimaera (but not M. abscessus) counts were significantly reduced in the presence of birnessite, a manganese containing mineral. These studies shed new light on the mineralogic features that promote or inhibit the presence of Hawai'i NTM in Hawai'i soil. IMPORTANCE Globally and in the United States, the prevalence of nontuberculous mycobacterial (NTM) pulmonary disease - a potentially life-threatening, but under-diagnosed chronic illness – is prominently rising. While NTM are ubiquitous in the environment including soil, the specific soil components that promote or inhibit NTM growth have not been elucidated. We hypothesized that NTM-culture positive soil contains minerals that promote NTM growth in vitro. Because Hawai'i is a hot spot for NTM and a unique geographic archipelago, we examined the composition of Hawai'i soil and identified individual clay, iron, and manganese minerals associated with NTM. Next, individual components were evaluated for their ability to directly modulate NTM growth in culture. In general, gibbsite and some manganese oxides were shown to decrease NTM, whereas iron containing minerals were associated with higher NTM counts. These data provide new information to guide future analyses of soil-associated factors impacting persistence of these soil bacteria.
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment, being found commonly in soils and natural bodies of freshwater. However, little is known about the environmental niches of NTM and how they relate to NTM prevalence in homes and other human-dominated areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.