The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3′OH-dependent trailer binding/protection and a UUU-3′OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3′OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.
Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.
In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.
Factor (F) XII knockdown attenuates catheter thrombosis in rabbits. Because histidine-rich glycoprotein (HRG) modulates FXIIa activity, we hypothesized that HRG depletion would promote catheter thrombosis. To test this, rabbits were given antisense oligonucleotides (ASOs) against HRG, FXII, or a control ASO or saline. The activated partial thromboplastin time (aPTT), prothrombin time (PT), and catheter-induced thrombin generation were determined in blood collected before and after treatment. Compared with the controls, the HRG- and FXII-directed ASOs reduced hepatic mRNA and plasma levels of HRG and FXII, respectively, by over 90%. Whereas HRG knockdown shortened the aPTT by 2.5-fold, FXII knockdown prolonged it by 4-fold; neither ASOs affected the PT. Catheter segments shortened the lag time and increased peak thrombin in plasma from control rabbits; effects significantly enhanced and attenuated in plasma from rabbits given the HRG- and FXII-directed ASOs, respectively. Catheters were then inserted into the right external jugular vein of the rabbits and the time for catheter occlusion was determined. The catheter occlusion times with the control ASO or saline were 62 ± 8 and 60 ± 11 min, respectively. The occlusion time was significantly reduced to 34 ± 9 min with HRG knockdown and significantly prolonged to 128 ± 19 min with FXII knockdown. HRG levels are decreased with sepsis or cancer and such patients are prone to catheter thrombosis. Because HRG modulates catheter thrombosis, our findings suggest that HRG supplementation may prevent this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.