Humans have relied on nature throughout their ages to cater for their basic needs including medicines to cure a wide spectrum of diseases. Plants have formed the basis for sophisticated systems of traditional medicines. For therapeutic agents many of the presently known lead compounds are natural products or their derivatives. Ethnomedicinal studies play a vital role to discover new drugs from indigenous medicinal plants. Green pharmaceuticals are getting popularity and extraordinary importance because vast opportunities for new drug discoveries are provided by the unmatched availability of chemical diversity and natural products either as pure compounds or as homogenous plant extracts. Therefore, in recent years the demand for herbal medicines and several natural products from a variety of plant species is consistently increasing. In spite of being an agricultural country and having different ecological regions, the medicinal plants of Pakistan have not been explored for their secondary metabolites which are responsible for treating different diseases. Although, huge importance of different extracts of medicinal plants from Pakistan have been reported for their different activities such as antimicrobial, anti-cancerouse, antiviral and antioxidant but complete biochemical profiling of these medicinal plants is lacking. LC-MS and GC-MS techniques have been applied in the field of drug discovery from medicinal plants but in Pakistan its success rate is very low in the subject of biochemical profiling. Therefore, such techniques should be used in Pakistan to explore active constituents from medicinal plants which could be used as medicines in future.
Diabetes mellitus termed as metabolic disorder is a collection of interlinked diseases and mainly body’s inability to manage glucose level which leads to cardiovascular diseases, renal failure, neurological disorders, and many others. The drugs contemporarily used for diabetes have many inevitable side effects, and many of them have become less responsive to this multifactorial disorder. Momordica charantia commonly known as bitter gourd has many bioactive compounds with antidiabetic properties. The current study was designed to use computational methods to discover the best antidiabetic peptides devised from hypoglycemic polypeptide-P of M. charantia. The binding affinity and interaction patterns of peptides were evaluated against four receptor proteins (i.e., as agonists of insulin receptor and inhibitors of sodium-glucose cotransporter 1, dipeptidyl peptidase-IV, and glucose transporter 2) using molecular docking approach. A total of thirty-seven peptides were docked against these receptors. Out of which, top five peptides against each receptor were shortlisted based on their S-scores and binding affinities. Finally, the eight best ligands (i.e., LIVA, TSEP, EKAI, LKHA, EALF, VAEK, DFGAS, and EPGGGG) were selected as these ligands strictly followed Lipinski’s rule of five and exhibited good ADMET profiling. One peptide EPGGGG showed activity towards insulin and SGLT1 receptor proteins. The top complex for both these targets was subjected to 50 ns of molecular dynamics simulations and MM-GBSA binding energy test that concluded both complexes as highly stable, and the intermolecular interactions were dominated by van der Waals and electrostatic energies. Overall, the selected ligands strongly fulfilled the drug-like evaluation criterion and proved to have good antidiabetic properties.
Sajjad, et al.: Pathogenesis of Alzheimer's DiseaseThe pathological emblems of Alzheimer's disease are the accumulation of amyloid-β plaques and neurofibrillary tangles. The alluvium of toxic amyloid-β-protein in the form of aggregates is central to the pathogenesis of Alzheimer's disease. The aggregate formation is due to the structural refitting of α-helical sheet of normal, soluble amyloid-β-protein to the β-sheets, which lead to oligomeric, fibrillar, insoluble and disease causing amyloid-β 42. Mounting data suggests that another factor, the tau protein ripens into highly phosphorylated form by several kinases after Aβ-stimulation leads to tangle formation resulting in neuronal bereavement in hippocampus and entorhinal regions as the disease progresses further. An overview has been presented in this review of the role of tau as an important partner of amyloid-β in the pathogenesis of Alzheimer's disease, both of which could be used as biomarkers for diagnosis and risk assessment with other molecular chaperones, which are associated with Alzheimer's disease. As a part of common pathophysiological mechanism the understanding of amyloid-β and tau toxicities might be helpful for finding molecular targets for the prevention or even cure of Alzheimer's disease.
Tumor necrosis factor alpha (TNF-α) plays a critical role in the progression of inflammation and affects the cells of the synovial membrane. Another key factor in the progression of rheumatoid inflammation is interleukin-6 (IL-6). Both TNF-α and IL-6 promote the proliferation of synovial membrane cells thus stimulating the production of matrix metalloproteinases and other cytotoxins and leading towards bone erosion and destruction of the cartilage. Growth differentiation factor-11 (GDF11) and growth differentiation factor-8 (GDF8) which is also known as myostatin are members of the transforming growth factor-β family and could be used as antagonists to inflammatory responses which are associated with rheumatoid arthritis. In the current study, to elucidate the evolutionary relationships of GDF11 with its homologs from other closely related organisms, a comprehensive phylogenetic analysis was performed. From the phylogram, it was revealed that the clade of Primates that belong to superorder Euarchontoglires showed close evolutionary relationships with order Cetartiodactyla of the Laurasiatheria superorder. Fifty tetrapeptides were devised from conserved regions of GDF11 which served as ligands in protein-ligand docking against TNF-α and IL-6 followed by drug scanning and ADMET profiling of best selected ligands. The peptides SAGP showed strong interactions with IL-6, and peptides AFDP and AGPC showed strong interactions with TNF-α, and all three peptides fulfilled all the pharmacokinetic parameters which are important for bioavailability. The potential of GDF8 as an antagonist to TNF-α and IL-6 was also explored using a protein-protein docking approach. The binding patterns of GDF8 with TNF-α and IL-6 showed that GDF8 could be used as a potential inhibitor of TNF-α and IL-6 to treat rheumatoid arthritis.
The Middle East respiratory syndrome coronavirus (MERS-CoV) is the major leading cause of respiratory infections listed as blueprint of diseases by the World Health Organization. It needs immediate research in the developing countries including Saudi Arabia, South Korea, and China. Still no vaccine has been developed against MERS-CoV; therefore, an effective strategy is required to overcome the devastating outcomes of MERS. Computer-aided drug design is the effective method to find out potency of natural phytochemicals as inhibitors of MERS-CoV. In the current study, the molecular docking approach was employed to target receptor binding of CoV. A total of 150 phytochemicals were docked as ligands in this study and found that some of the phytochemicals successfully inhibited the catalytic triad of MERS-CoV. The docking results brought novel scaffolds which showed strong ligand interactions with Arg178, Arg339, His311, His230, Lys146, and Arg139 residues of the viral domains. From the top ten ligands found in this study (i.e., rosavin, betaxanthin, quercetin, citromitin, pluviatilol, digitogenin, ichangin, methyl deacetylnomilinate, kobusinol A, and cyclocalamin) based on best S -score values, two phytochemicals (i.e., pluviatilol and kobusinol A) exhibited all drug-likeness properties following the pharmacokinetic parameters which are important for bioavailability of drug-like compounds, and hence, they can serve as potential drug candidates to stop the viral load. The study revealed that these phytochemicals would serve as strong potential inhibitors and a starting point for the development of vaccines and proteases against MERS-CoV. Further, in vivo studies are needed to confirm the efficacy of these potential drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.